Skip to main content
Log in

Gel encapsulated microorganisms: Saccharomyces cerevisiae—Silica gel biocomposites

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

“Is it possible to incorporate a living microorganism as a second phase in a man-made, engineered material?” In this preliminary study, Saccharomyces cerevisiae has been encapsulated in a transparent matrix of porous, gel-derived silica. After gelation, aging, and prolonged storage at 5°C, S. cerevisiae bioactivity could be triggered. Bioactivity was followed by evolution of alcohol within the S. cerevisiae as a function of time during incubation by the molecular probe molecule pyranine using fluoresence spectrophotometry. Described also are some of the potential applications of this new class of biocomposite material incorporating a “living” second phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Ohya and D. Botstein, Science, 263, 963 (1994).

    Google Scholar 

  2. R.H. Morse, Science, 262, 1563 (1993).

    Google Scholar 

  3. T.C. Wu and M. Lichten, Science, 263, 515 (1994).

    Google Scholar 

  4. T. Maeda et al., Nature, 369, 242 (1994).

    Google Scholar 

  5. R.B. Wickner, Science, 264, 566 (1994).

    Google Scholar 

  6. M. Foss, et al., Science, 262, 1838 (1993).

    Google Scholar 

  7. H. Liu, C.A. Styles, and G.R. Fink, Science, 262, 1741 (1993).

    Google Scholar 

  8. R. McDaniel, et al., Science, 262, 1546 (1993).

    Google Scholar 

  9. L.P. Wackett, et al., Nature, 368, 627 (1994).

    Google Scholar 

  10. Z. Reich, J. Wachtel, and A. Minsky, Science, 264, 1460 (1994).

    Google Scholar 

  11. A.M. Sun, et al., in Artificial Organs, edited by J.D. Andrade, et al. (VCH Publishers, New York, 1987), p. 613.

    Google Scholar 

  12. C.K. Colton and N.L. Weinless, in Artifical Organs, edited by J.D. Andrade, et al. (VCH Publishers, New York, 1987), p. 641.

    Google Scholar 

  13. J.D. Mackenzie, J. Non-Cryst. Sol., 48, 1 (1982).

    Google Scholar 

  14. E.J.A. Pope and J.D. Mackenzie, J. Non-Cryst. Sol., 7, 185 (1986).

    Google Scholar 

  15. D. Avnir, D. Levy, and R. Reisfeld, J. Phys. Chem., 88, 5956 (1984).

    Google Scholar 

  16. T. Tani, H. Namikawa, K. Arai, and A. Makishima, J. Appl. Phys., 58, 3559 (1985).

    Google Scholar 

  17. E.J.A. Pope and J.D. Mackenzie, MRS Bull, 12(3), 29 (1987).

    Google Scholar 

  18. E.T. Knobbe, B. Dunn, P.D. Fuqua, and F. Nishida, Appl. Optics, 29(18), 2729 (1990).

    Google Scholar 

  19. B. Dunn, et al., in Better Ceramics Through Chemistry III, MRS Symp. Proc., 121, 331 (1988).

    Google Scholar 

  20. E.J.A. Pope, J. Sol-Gel Sci. & Tech., 2, 717 (1994).

    Google Scholar 

  21. T. Che, et al., J. Non-Cryst. Sol., 102, 280 (1988).

    Google Scholar 

  22. S. Braun, et al., Mater. Lett., 10, 1 (1990); L.M. Ellerby, et al., Science, 255, 1113 (1992); S.A. Yamanaka, et al., Chem. Mater, 4(3), 495 (1992).

    Google Scholar 

  23. S. Wu, et al., Chem. Mater., 5(1), 115 (1993).

    Google Scholar 

  24. P. Lucan, et al., in Sol-Gel Optics II, SPIE Symp. Proc., 1758, 464 (1992).

    Google Scholar 

  25. G. Carturan, et al., J. Mol. Catal., 57, L13 (1989); M. Uo, et al., J. Ceram. Soc. Japan, 100(4), 426 (1992); L. Inama, et al., J. Biotech., 30, 197 (1993).

  26. G.W. Burns, The Science of Genetics: An Introduction to Heredity (Macmillan Co., NY, 1970) 325–327, 357–538; Y. Oshima, in The Molecular biology ofthe Yeast Saccharomyces: Metabolism and Gene Expression, edited by J.N. Stathem, E.W. Jones, and J.R. Broach (Cold Springs Harbor Laboratory, Cold Springs Harbor, NY, 1982), pp. 159–180.

    Google Scholar 

  27. H. Kondo I. Miwa, and J. Sunamoto, J. Phys. Chem., 86, 4826 (1982).

    Google Scholar 

  28. E. Bardez, et al., J. Phys. Chem., 88, 1909 (1984).

    Google Scholar 

  29. N.R. Clement and M. Gould, Biochemistry, 20, 1534 (1981).

    Google Scholar 

  30. K. Kano and J.H. Fendler, Biochim. Biophys. Acta, 509, 289 (1978).

    Google Scholar 

  31. D. Avnir, et al., J. Non-Cryst. Sol., 99, 379 (1988).

    Google Scholar 

  32. J.C. Pouxviel, B. Dunn, and J. Zink, J. Phys. Chem., 93, 2134 (1989); B. Dunn, et al., in Better Ceramics Through Chemistry III, MRS Symp. Proc., 121, 313 (1988).

    Google Scholar 

  33. C.J. Brinker, et al., J. Non-Cryst. Sol., 48, 47 (1982); ibid., 63, 45 (1984).

    Google Scholar 

  34. Average pore diameter was estimated by the method of Kadokura (K. Kadokura, Ph.D. Dissertation, University of California, Los Angeles, 1983).

  35. The assistance of Mr. A. Almazan in sample preparations is greatly appreciated.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pope, E.J.A. Gel encapsulated microorganisms: Saccharomyces cerevisiae—Silica gel biocomposites. J Sol-Gel Sci Technol 4, 225–229 (1995). https://doi.org/10.1007/BF00488377

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00488377

Keywords

Navigation