Skip to main content
Log in

Transition metal based hybrid organic-inorganic copolymers

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The synthesis of transition metal based hybrid copolymers is achieved by using transition metal alkoxides modified by chelating ligands functionalized with polymerizable organic groups. The heterofunctional precursor is an acetoacetoxyethylmethacrylate modified zirconium propoxyde. The hybrid copolymers obtained by double polymerization of heterofunctional precursors are characterized in the liquid and in the solid state by using light scattering, SAXS measurements, UV-visible, FTIR, 13C MAS NMR spectroscopies and several chemical and gravimetric analyses. Both inorganic polycondensation and organic polymerization occured and the chemical bond between organic and inorganic moities is conserved. These hybrids consist of polyzirconates chemically bonded to polymeric methacrylate chains via the β-diketo complexing function. The determination of the conversion degree of both polymerization reactions reveals the competition between the two types of reactions. This competition controls the scale of homogeneity. The modification ratio (R = AAEM/Zr) of zirconium alkoxide appears to be the key parameter for the tuning of the homogeneity. A careful adjustment of this parameter leads to zirconium oxo species with more or less open structures and to the tailoring of the ratio between organic and inorganic components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.J. Brinker and G. Scherrer, Sol-Gel Science, the Physics and Chemistry of Sol-Gel Processing (Academic press, San-Diego, 1989).

    Google Scholar 

  2. Sol-Gel Technology for Thin Films, Fiber, Preforms, Electronics and Especialty Shapes, edited by L. C. Klien (Noyes Pub., 1988).

  3. J. Livage, M. Henry, and C. Sanchez, Progress in Solid State Chemistry 18, 259 (1988).

    Google Scholar 

  4. C.D. Chandler, C. Roger, and M. Hampden-Smith, Chem. Rev. 93, 1205 (1993).

    Google Scholar 

  5. Better Ceramics Through Chemistry I to VII, Mat. Res. Soc. Symp. Proc. 73 (1986). 121 (1988), 180 (1990), 271 (1992), 346 (1994).

  6. D. Avnir, D. Levy, and R. Reisfeld, J. Phys. Chem. 88, 5956 (1984).

    Google Scholar 

  7. H. Schmidt and B. Seiferling, Mat. Res. Soc. Symp. Proc. 73, 739 (1986).

    Google Scholar 

  8. G.L. Wilkes, B. Orler, and H.H. Huang, Polymer Prep. 26(2), 300 (1986).

    Google Scholar 

  9. G.-S. Sur and J.E. Mark, Eur. Polym. J. 21(12), 1051 (1986).

    Google Scholar 

  10. a) Sol-Gel Optics I, edited by J.D. Mackenzie and D.R. Ulrich (Proc. SPIE 1328, Washington, 1990).

  11. b) Sol-Gel Optics II, edited by J.D. Mackenzie (Proc. SPIE 1758, Washington, 1992).

  12. c) Sol-Gel Optics III, edited by J.D. Mackenzie (Proc. SPIE 2288, Washington, 1994).

  13. Sol-Gel Optics, Processing and Applications, edited by L.C. Klein (Kluwer Academic Publishers, Boston, 1993).

    Google Scholar 

  14. H.H. Huang, B. Orler, and G.L. Wilkes, Macromolecules 20, 1322 (1987).

    Google Scholar 

  15. B.M. Novak, Adv. Mater. 5(6), 422 (1993).

    Google Scholar 

  16. Y. Chujo and T. Saegusa, Advances in Polymer Science 100, 11 (1992).

    Google Scholar 

  17. B.K. Coltrain, C.J.T. Landry, J.M. O'Reilly, A.M. Chamberlain, G.A. Rakes, J.S.S. Sedita, L.W. Kelts, M.R. Landry, and V.K. Long, Chem. Mater. 5, 1445 (1993).

    Google Scholar 

  18. C. Sanchez and F. Ribot, New Journal Chemistry 18(10), 1007 (1994).

    Google Scholar 

  19. A. Morikawa, Y. Iyoku, M. Kakimoto, and Y. Imai, J. Mater. Chem. 2(7), 679 (1992).

    Google Scholar 

  20. K.J. Shea, D.A. Loy, and O. Webster, J. Am. Chem. Soc. 114, 6700 (1992).

    Google Scholar 

  21. R.J.P. Corriu, J.J.E. Moreau, P. Thepot, and M. Wong Chi Man, Chem. Mater. 4, 1217 (1992).

    Google Scholar 

  22. F. Ribot, F. Banse, and C. Sanchez, Mat. Res. Soc. Symp. Proc. 346, 121 (1994).

    Google Scholar 

  23. F. Ribot, F. Banse, F. Diter, and C. Sanchez, New Journal Chemistry 19, 10, 1163 (1995).

    Google Scholar 

  24. F. Banse, F. Ribot, C. Sanchez, M. Lahcini, and B. Jouseaume, JSST (submitted).

  25. J.C. Debsikar, J. Non-Cryst. Solids 87, 343 (1986).

    Google Scholar 

  26. W.C. Lacourse and S. Kim in Science of Ceramic Processing, edited by L.L. Hench and D.R. Ulrich (Wiley, New-York, 1986), p. 304.

    Google Scholar 

  27. H. Unuma, T. Tokoda, T.Y. Susuki, T. Furusaki, K. Kodaira, and T. Hatsushida, J. Mater. Sci. Lett. 5, 1248 (1986).

    Google Scholar 

  28. P. Papet, N. LeBars, J.F. Baumard, A. Lecomte, and A. Dauger, J. Mater. Sci. 24, 3850 (1989).

    Google Scholar 

  29. C. Sanchez, J. Livage, M. Henry, and F. Babonneau, J. Non-Cryst. Solids 100, 650 (1988).

    Google Scholar 

  30. A. Leaustic, F. Babonneau, and J. Livage, Chem. Mater. 1, 248 (1989).

    Google Scholar 

  31. F. Ribot, P. Toledano, and C. Sanchez, Chem. Mater. 3, 759 (1991).

    Google Scholar 

  32. M. In (PHD 1994 Martin In University of Paris VI, France).

  33. A.L. Suvorov and S.S. Spasskii, Proc. Acad. Sci. USSR 127, 615 (1959).

    Google Scholar 

  34. R. NaB and H. Schmidt in Sol-Gel Optics I, edited by J.D. Mackenzie and D.R. Ulrich (Proc. SPIE 1328, Washington, 1990), p. 258.

  35. U. Schubert, E. Arpac, W. Glaubitt, A. Helmerich, and C. Chau, Chem. Mater. 3, 291 (1992).

    Google Scholar 

  36. C. Sanchez and M. In, J. Non-Cryst. Solids 147 & 148, 1 (1992).

    Google Scholar 

  37. E. Tsushida, Nishide, Adv. Polym. Sci. 24, 1 (1977).

    Google Scholar 

  38. J. Lambard and T. Zemb, J. de Physique 2, 1191 (1992).

    Google Scholar 

  39. P. Toledano, M. In, and C. Sanchez, C. R. Acad. Sci. Paris Serie II 313, 1247 (1991).

    Google Scholar 

  40. T.A. Ulibarri, G. Beaucage, D.W. Schaefer, B.J. Oliver, and R.A. Assink, Mater. Res. Soc. Proc. Symp. 274, 85 (1992).

    Google Scholar 

  41. M.R. Landry, B.K. Coltrain, C.J.T. Landry, and J.M. O'Reilly, J. Polymer. Science B: Polymer Physics 33, 637 (1995).

    Google Scholar 

  42. C.S. Betratet and G.L. Wilkes, Chem. Mater. 7, 535 (1995).

    Google Scholar 

  43. P.G. de Gennes, J. Physique Lett. 40, L-69 (1979).

    Google Scholar 

  44. J. Blanchard, S. Doeuff-Barboux, J. Maquet, and C. Sanchez, New Journal Chemistry 19, 8 and 9, 929 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

In, M., Gérardin, C., Lambard, J. et al. Transition metal based hybrid organic-inorganic copolymers. J Sol-Gel Sci Technol 5, 101–114 (1995). https://doi.org/10.1007/BF00487726

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00487726

Keywords

Navigation