Skip to main content
Log in

Comparative analysis of malate dehydrogenases of Drosophila melanogaster

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

The malate dehydrogenases of D. melanogaster have been resolved into a cytoplasmic form (cMDH) and a mitochondrial matrix form (mMDH). Flies homozygous for allozyme variants exhibit isozymes of cMDH detected by starch gel electrophoresis and acrylamide gel isoelectric focusing. The basis of these isozymes was investigated, and the results suggest either conformational or epigenetic modification of isozymes. The probable structural gene for cMDH (Mdh-1) has been mapped genetically by allozyme variants to II-35 ± 3 and cytologically by monitoring gene dosage in segmental aneuploids to between 28D and 29F on II-L of the Drosophila salivary gland chromosome map. The structural gene for mMDH is neither identical to nor in the near chromosomal proximity of Mdh-1. Nevertheless, the two enzymes exhibit markedly similar properties with respect to (1) catalytic activity, (2) pH optima, (3) pH optimum shift in response to different ionic environments, and (4) molecular weight as determined by sucrose density gradient sedimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, M. (1969). The malate dehydrogenases of Drosophila melanogaster. Ph.D. thesis, The Johns Hopkins University, Baltimore.

    Google Scholar 

  • Blonde, D. J., Kresach, E. J., and Kosicki, G. W. (1967). The effects of ions and freeze thawing on the supernatant and mitochondrial malate dehydrogenase. Can. J. Biochem. 45641.

    Google Scholar 

  • Callahan, J. W., and Kosicki, G. W. (1967). The effect of lipid micelles on mitochondrial malate dehydrogenase. Can. J. Biochem. 45839.

    Google Scholar 

  • Chance, B., and Williams, G. (1956). Respiratory enzymes in oxidative phosphorylation. VI. The effects of adenosine diphosphate on azide treated mitochondria. J. Biol. Chem. 221477.

    Google Scholar 

  • Coote, J. L., and Work, T. S. (1971). Proteins coded by mitochondrial DNA of mammalian cells. Europ. J. Biochem. 23564.

    Google Scholar 

  • Davidson, R. G., and Cortner, J. A. (1967). Mitochondrial malate dehydrogenase: A new genetic polymorphism in man. Science 1571569.

    Google Scholar 

  • Fox, D. J. (1971). The soluble citric acid cycle enzymes of Drosophila melanogaster. I. Genetics and ontogeny of NADP-linked isocitrate dehydrogenase. Biochem. Genet. 569.

    Google Scholar 

  • Glassman, E. (1965). Genetic regulation of xanthine dehydrogenase in Drosophila melanogaster. Fed. Proc. 241243.

    Google Scholar 

  • Grell, E. H. (1969). New mutants. Drosophila Inform. Serv. 4446.

    Google Scholar 

  • Jacobsen, K. B. (1968). Alcohol dehydrogenase of Drosophila: Interconversion of isoenzymes. Science 159324.

    Google Scholar 

  • Kitto, G. B., Wassarman, P. M., and Kaplan, N. O. (1966). Enzymatically active conformers of mitochondrial malate dehydrogenase. Proc. Natl. Acad. Sci. 56578.

    Google Scholar 

  • Lindsley, D. L., and Grell, E. H. (1967). Genetic variations in Drosophila melanogaster. Carnegie Inst. Washington Publ. No. 627.

  • Lindsley, D. L., Sandler, L., Baker, B., Carpenter, A., Denell, R., Hall, J., Jacobs, P., Miklos, G., Davis, B., Gethmann, R., Hardy, R., Hessler, A., Miller, S., Nozawa, H., Parry, D., and Gould-Somero, M. (1972). Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics 71157.

    Google Scholar 

  • Longo, G., and Scandalios, J. (1969). Nuclear gene control of mitochondrial malic dehydrogenase in maize. Proc. Natl. Acad. Sci. 62104.

    Google Scholar 

  • MacIntyre, R. J. (1971). Evolution of acid phosphatase-1 in the genus Drosophila as estimated by subunit hybridization. Genetics 68483.

    Google Scholar 

  • Markert, C. (1968). The molecular basis of isozymes. Ann. N. Y. Acad. Sci. 15114.

    Google Scholar 

  • Martin, R. G., and Ames, B. N. (1960). A method for determining of sedimentation behavior of enzymes: Application to protein mixtures. J. Biol. Chem. 2361372.

    Google Scholar 

  • McReynolds, M. S., and Kitto, B. (1970). Purification and properties of Drosophila malate dehydrogenases. Biochim. Biophys. Acta 198165.

    Google Scholar 

  • Murphy, W. H., Kitto, G. B., Everse, J., and Kaplan, N. O. (1967). Malate dehydrogenases. I. A survey of molecular size measured by gel filtration. Biochemistry 6603.

    Google Scholar 

  • Nash, D., and Bell, J. B. (1968). Larval age and the pattern of DNA synthesis in polytene chromosomes. Can. J. Genet. Cytol. 1082.

    Google Scholar 

  • Neupert, W., Brdiczka, D., and Bucher, T. (1967). Incorporation of amino acids into the outer and inner membrane of isolated rat liver mitochondria. Biochim. Biophys. Res. Commun. 27488.

    Google Scholar 

  • O'Brien, S. J. (1968). Electrophoretic variants of soluble malic dehydrogenase in Drosophila melanogaster. Isozyme Bull. 140.

    Google Scholar 

  • O'Brien, S. J., and Gethmann, R. C. (1973). Segmental aneuploidy as a probe for structural genes in Drosophila: Mitochondrial membrane enzymes. Genetics 75 (in press).

  • O'Brien, S. J., and MacIntyre, R. J. (1969). An analysis of gene enzyme variability in natural populations of Drosophila melanogaster and D. simulans. Am. Naturalist 10397.

    Google Scholar 

  • O'Brien, S. J., and MacIntyre, R. J. (1972a). The α-glycerophosphate cycle in Drosophila. I. Biochemical and developmental aspects. Biochem. Genet. 7141.

    Google Scholar 

  • O'Brien, S. J., and MacIntyre, R. J. (1972b). The α-glycerophosphate cycle in Drosophila. II. Genetic aspects. Genetics 71127.

    Google Scholar 

  • Sacktor, B. (1965). Energetics and respiratory metabolism of muscular contraction. In Rockstein, M. (ed.), Physiology of Insecta, Vol. 2, Academic Press, New York, pp. 483–580.

    Google Scholar 

  • Schnaitman, C., and Greenawalt, J. W. (1968). Enzymatic properties of the inner and outer membranes of rat liver mitochondria. J. Cell Biol. 38158.

    Google Scholar 

  • Shaw, C. (1969). Isozymes: Classification, frequency and significance. Intermat. Rev. Cytol. 25297.

    Google Scholar 

  • Shows, T. B., Chapman, V. M., and Ruddle, F. H. (1970). Mitochondrial malate dehydrogenase and malic enzyme: Mendelian inherited electrophoretic variants in the mouse. Biochem. Genet. 4707.

    Google Scholar 

  • Tait, A. (1968). Genetic control of β-hydroxybutyric dehydrogenase in Paramecium aurelia. Nature 219941.

    Google Scholar 

  • Tait, A. (1970). Genetics of NADP isocitrate dehydrogenase in Paramecium aurelia. Nature 225181.

    Google Scholar 

  • Vessell, E. (ed.) (1968). Multiple molecular forms of enzymes. Ann. N. Y. Acad. Sci. 151.

  • Wright, D.A., and Shaw, C. (1969). Genetics and ontogeny of α-glycerophosphate dehydrogenase isozymes in Drosophila melanogaster. Biochem. Genet. 3343.

    Google Scholar 

  • Wrigley, C. (1968). Gel electrofocusing—A technique for analyzing multiple protein samples by isoelectric focusing. Sci. Tools (LKB Instrument J.) 1517.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This project was supported by NIH postdoctoral research fellowship No. 6-FO2-GM-49, 633-01 from the National Institute of General Medical Sciences.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Brien, S.J. Comparative analysis of malate dehydrogenases of Drosophila melanogaster . Biochem Genet 10, 191–205 (1973). https://doi.org/10.1007/BF00485765

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00485765

Keywords

Navigation