Skip to main content

Quantitation of Glutamine Synthetase 1 Activity in Drosophila melanogaster

  • Protocol
  • First Online:
Metabolic Reprogramming

Abstract

Protocols to assay the activity of glutamine synthetase (GS) are presented as they have been used in our laboratory to correlate the expression levels of the gene encoding Drosophila GS1 gene, the GS1 protein levels, and its activity in extracts of larvae and heads from Drosophila melanogaster. The assays are based on the glutamine synthetase-catalyzed formation of γ-glutamylhydroxylamine in the presence of ATP, L-glutamate, and hydroxylamine, in which hydroxylamine substitutes for ammonia in the reaction. Formation of γ-glutamylhydroxylamine is monitored spectrophotometrically in discontinuous assays upon complex formation with FeCl3. Fixed-time assays and those based on monitoring the time-course of product formation at different reaction times are described. The protocols can be adapted to quantify glutamine synthetase activity on biological materials other than Drosophila.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mouilleron S, Golinelli-Pimpaneau B (2007) Conformational changes in ammonia-channeling glutamine amidotransferases. Curr Opin Struct Biol 17:653–664. https://doi.org/10.1016/j.sbi.2007.09.003

    Article  CAS  PubMed  Google Scholar 

  2. Raushel FM, Thoden JB, Holden HM (2003) Enzymes with molecular tunnels. Acc Chem Res 36:539–548. https://doi.org/10.1021/ar020047k

    Article  CAS  PubMed  Google Scholar 

  3. Durand P, Golinelli-Pimpaneau B, Mouilleron S et al (2008) Highlights of glucosamine-6P synthase catalysis. Arch Biochem Biophys 474:302–317. https://doi.org/10.1016/j.abb.2008.01.026

    Article  CAS  PubMed  Google Scholar 

  4. Zhang Y, Morar M, Ealick SE (2008) Structural biology of the purine biosynthetic pathway. Cell Mol Life Sci 65:3699–3724. https://doi.org/10.1007/s00018-008-8295-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Frechin M, Duchene AM, Becker HD (2009) Translating organellar glutamine codons: a case by case scenario? RNA Biol 6:31–34. https://doi.org/10.4161/rna.6.1.7564

    Article  CAS  PubMed  Google Scholar 

  6. Zalkin H, Smith JL (1998) Enzymes utilizing glutamine as an amide donor. Adv Enzymol Relat Areas Mol Biol 72:87–144. https://doi.org/10.1002/9780470123188.ch4

    Article  CAS  PubMed  Google Scholar 

  7. Vanoni MA, Curti B (2008) Structure-function studies of glutamate synthases: a class of self-regulated iron-sulfur flavoenzymes essential for nitrogen assimilation. IUBMB Life 60:287–300. https://doi.org/10.1002/iub.52

    Article  CAS  PubMed  Google Scholar 

  8. Carter CJ (1982) Glutamine synthetase activity in Huntington’s disease. Life Sci 31:1151–1159. https://doi.org/10.1016/0024-3205(82)90090-x

    Article  CAS  PubMed  Google Scholar 

  9. Vernizzi L, Paiardi C, Licata G et al (2020) Glutamine Synthetase 1 increases autophagy lysosomal degradation of mutant huntingtin aggregates in neurons, ameliorating motility in a drosophila model for Huntington’s disease. Cells 9. https://doi.org/10.3390/cells9010196

  10. Ward PS, Thompson CB (2012) Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 21:297–308. https://doi.org/10.1016/j.ccr.2012.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sonnewald U, Schousboe A (2016) Introduction to the glutamate-glutamine cycle. Adv Neurobiol 13:1–7. https://doi.org/10.1007/978-3-319-45096-4_1

    Article  PubMed  Google Scholar 

  12. Grimaldi M, Karaca M, Latini L et al (2017) Identification of the molecular dysfunction caused by glutamate dehydrogenase S445L mutation responsible for hyperinsulinism/hyperammonemia. Hum Mol Genet 26:3453–3465. https://doi.org/10.1093/hmg/ddx213

    Article  CAS  PubMed  Google Scholar 

  13. Plaitakis A, Zaganas I, Spanaki C (2013) Deregulation of glutamate dehydrogenase in human neurologic disorders. J Neurosci Res 91:1007–1017. https://doi.org/10.1002/jnr.23176

    Article  CAS  PubMed  Google Scholar 

  14. Spodenkiewicz M, Diez-Fernandez C, Rufenacht V, Gemperle-Britschgi C, Häberle J (2016) Minireview on glutamine Synthetase deficiency, an ultra-rare inborn error of amino acid biosynthesis. Biology 5:40. https://doi.org/10.3390/biology5040040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Butterworth J (1986) Changes in nine enzyme markers for neurons, glia, and endothelial cells in agonal state and Huntington’s disease caudate nucleus. J Neurochem 47:583–587. https://doi.org/10.1111/j.1471-4159.1986.tb04539.x

    Article  CAS  PubMed  Google Scholar 

  16. Carter CJ (1983) Glutamine synthetase and fructose-1, 6-diphosphatase activity in the putamen of control and Huntington’s disease brain post mortem. Life Sci 32:1949–1955. https://doi.org/10.1016/0024-3205(83)90046-2

    Article  CAS  PubMed  Google Scholar 

  17. Jayakumar AR, Norenberg MD (2016) Glutamine synthetase: role in neurological disorders. Adv Neurobiol 13:327–350. https://doi.org/10.1007/978-3-319-45096-4_13

    Article  PubMed  Google Scholar 

  18. Caizzi R, Bozzetti MP, Caggese C et al (1990) Homologous nuclear genes encode cytoplasmic and mitochondrial glutamine synthetase in Drosophila melanogaster. J Mol Biol 212:17–26. https://doi.org/10.1016/0022-2836(90)90301-2

    Article  CAS  PubMed  Google Scholar 

  19. Steffan JS, Bodai L, Pallos J et al (2001) Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 413:739–743. https://doi.org/10.1038/35099568

    Article  CAS  PubMed  Google Scholar 

  20. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415. https://doi.org/10.1242/dev.118.2.401

    Article  CAS  PubMed  Google Scholar 

  21. Vorhaben JE, Wong L, Campbell JW (1973) Assay for glutamine synthetase activity. Biochem J 135:893–896. https://doi.org/10.1042/bj1350893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. De Pinto V, Caggese C, Prezioso G et al (1987) Purification of the glutamine synthetase II isozyme of Drosophila melanogaster and structural and functional comparison of glutamine synthetases I and II. Biochem Genet 25:821–836. https://doi.org/10.1007/BF00502602

    Article  PubMed  Google Scholar 

  23. Caizzi R, Ritossa F (1983) The enzyme glutamine synthetase I of Drosophila melanogaster is associated with a modified RNA. Biochem Genet 21:267–285. https://doi.org/10.1007/BF00499138

    Article  CAS  PubMed  Google Scholar 

  24. Rowe BW, Ronzio VP, Meister A (1970) Glutamine synthetase (sheep brain). Methods Enzymol 17:900–910. https://doi.org/10.1016/0076-6879(71)17304-1

    Article  Google Scholar 

  25. Kingdon HS, Hubbard JS, Stadtman ER (1968) Regulation of glutamine synthetase. XI. The nature and implications of a lag phase in the Escherichia coli glutamine synthetase reaction. Biochemistry 7:2136–2142. https://doi.org/10.1021/bi00846a016

    Article  CAS  PubMed  Google Scholar 

  26. Dawson RMC, Elliott DC, Elliott WH et al (1989) Data for biochemical research, 3rd edn. Clarendon Press, Oxford. https://doi.org/10.1016/0307-4412(87)90110-5

    Book  Google Scholar 

  27. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by the Cariplo Foundation, grant n. 20140703, and the European Huntington’s Disease Network seed funds n. 689 to P.B.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Antonietta Vanoni or Paola Bellosta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vitali, T., Vanoni, M.A., Bellosta, P. (2023). Quantitation of Glutamine Synthetase 1 Activity in Drosophila melanogaster. In: Papa, S., Bubici, C. (eds) Metabolic Reprogramming. Methods in Molecular Biology, vol 2675. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3247-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3247-5_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3246-8

  • Online ISBN: 978-1-0716-3247-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics