Skip to main content
Log in

Isolation of unselected mutants of alkaline phosphatase in Escherichia coli through nitrosoguanidine comutation and comparison with natural variants

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

We have devised a general procedure to isolate enzymatic variants without selecting or screening for related phenotypic peculiarities of the organism. A high mutation rate at phoA, the structural gene for alkaline phosphatase, is found among N-methyl-N'-nitro-N-nitrosoguanidine-induced proC revertants of Escherichia coli. About 1.6% of such revertants lack alkaline phosphatase, and many others exhibit altered enzyme parameters. Three mutants studied in detail had full enzyme activity but differed from the wild type in electrophoretic mobility, thermostability, and, in one case, optimum pH for enzyme activity. Four other phosphatase variants were discovered in a survey of 50 natural E. coli isolates; their electrophoretic mobility and thermostability were different from those of the wild type. Natural and induced enzyme variants are similar enough to suggest the absence of strong selective pressures in natural populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bachman, B. J., and Low, K. B. (1980). Linkage map of Escherichia coli K-12. Microbiol. Rev. 441.

    Google Scholar 

  • Berg, C. M., and Rossi, J. J. (1974). Proline excretion and indirect suppression in Escherichia coli and Salmonella typhimurium. J. Bacteriol. 118928.

    Google Scholar 

  • Bradshaw, R. A., Cancedda, F., Ericsson, L. H., Neumann, P. A., Shriefer, K., and Walsh, K. A. (1981). Amino acid sequence of Escherichia coli alkaline phosphatase. Proc. Natl. Acad. Sci. USA 783473.

    Google Scholar 

  • Cerdá-Olmedo, E., Hanawalt, P. C., and Guerola, N. (1968). Mutagenesis of the replication point by nitrosoguanidine: Map and pattern of replication of the Escherichia coli chromosome. J. Mol. Biol. 33705.

    Google Scholar 

  • Cochrane, B. J., and Richmond, R. C. (1979). Studies of esterase-6 in Drosophila melanogaster. II The genetics and frequency distributions of naturally occurring variants studied by electrophoretic and heat stability criteria. Genetics 93461.

    Google Scholar 

  • Ewens, W. J. (1977). Population genetics theory in relation to the neutralist-selectionist controversy. Adv. Hum. Genet. 867.

    Google Scholar 

  • Fuerst, P. A., and Ferrell, R. E. (1980). The stepwise mutation model: An experimental evaluation utilizing homoglobin variants. Genetics 94185.

    Google Scholar 

  • Garen, A., and Levinthal, C. (1960). A fine-structure genetic and chemical study of the enzyme alkaline phosphatase of E. coli. Biochim. Biophys. Acta 38470.

    Google Scholar 

  • Gichner, T., and Velemínský, J. (1982). Genetic effects of N-methyl-N′-nitro-N-nitrosoguanidine and its homologs. Mutation Res. 99129.

    Google Scholar 

  • Guerola, N., Ingraham, J. L., and Cerdá-Olmedo, E. (1971). Induction of closely linked multiple mutations by nitrosoguanidine. Nature New Biol. 230122.

    Google Scholar 

  • Lloveres, C., and Cerdá-Olmedo, E. (1973). Nitrosoguanidine assay of episomal integration in Escherichia coli. J. Bacteriol. 116527.

    Google Scholar 

  • Maaløe, O., and Hanawalt, P. C. (1961). Thymine deficiency and the normal DNA replication cycle. I. J. Mol. Biol. 3144.

    Google Scholar 

  • Malamy, M. H., and Horecker, B. L. (1964). Release of alkaline phosphatase from cells of Escherichia coli upon lysozyme spheroplast formation. Biochemistry 31889.

    Google Scholar 

  • Milkman, R. (1975). Allozyme variation in E. coli of diverse natural origins. In Markert, C. L. (ed.), Isozymes IV Academic Press, New York, pp. 273–285.

    Google Scholar 

  • Miller, J. H. (1972). Experiments in Molecular Genetics Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Ohta, T., and Kimura, M. (1973). A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet. Res. 22201.

    Google Scholar 

  • Reid, T. W., and Wilson, I. B. (1971). E. coli alkaline phosphatase. In Boyer, P. D. (ed.), The Enzymes IV Academic Press, New York, pp. 373–415.

    Google Scholar 

  • Richardson, R. H., and Smouse, P. E. (1976). Patterns of molecular variation. I. Interspecific comparisons of electromorphs in the Drosophila mulleri complex. Biochem. Genet. 14447.

    Google Scholar 

  • Rothman, F. G., and Coleman, J. R. (1968). Kinetics of transcription and translation of a repressed gene. J. Mol. Biol. 33527.

    Google Scholar 

  • Sampsell, B. M., and Milkman, R. (1978). Van der Waals bonds as unit factors in allozyme thermostability variation. Biochem. Genet. 161139.

    Google Scholar 

  • Schlesinger, M. J., and Andersen, L. (1968). Multiple molecular forms of the alkaline phosphatase of Escherichia coli. Proc. Natl. Acad. Sci. USA 51159.

    Google Scholar 

  • Schlesinger, M. J., and Levinthal, C. (1963). Hybrid protein formation of E. coli alkaline phosphatase leading to in vitro complementation. J. Mol. Biol. 71.

    Google Scholar 

  • Selander, R. K., and Levin, B. R. (1980). Genetic diversity and structure in Escherichia coli populations. Science 210545.

    Google Scholar 

  • Torriani, A. (1966). Alkaline phosphatase from Escherichia coli. In Cantoni, G. L., and Davies, D. R. (eds.), Procedures in Nucleic Acid Research Harper and Row, New York, pp. 224–235.

    Google Scholar 

  • Torriani, A. (1974). The alkaline phosphatase of Escherichia coli. In King, R. C. (ed.), Handbook of Genetics Plenum, New York, Vol. 1, p. 173.

    Google Scholar 

  • Waight, R. D., Leff, P., and Bardsley, W. G. (1977). Steady-state kinetic studies of the negative co-operativity and flip-flop mechanism for Escherichia coli alkaline phosphatase. Biochem. J. 167787.

    Google Scholar 

  • Yoshida, A., and Beutler, E. (1978). Human glucose-6-phosphate dehydrogenase variants: A supplementary tabulation. Ann. Hum. Genet. 41347.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by grants from the Fundación J. March and the Comisión Asesora para la Investigación Científica y Técnica.

Rights and permissions

Reprints and permissions

About this article

Cite this article

del Castillo, F., Cerdá-Olmedo, E. Isolation of unselected mutants of alkaline phosphatase in Escherichia coli through nitrosoguanidine comutation and comparison with natural variants. Biochem Genet 22, 467–482 (1984). https://doi.org/10.1007/BF00484517

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00484517

Key words

Navigation