Skip to main content
Log in

Sex-related differences in the handling of fluorescent ovalbumin by the proximal tubule of the rat kidney

  • Original Articles
  • Published:
Histochemistry Aims and scope Submit manuscript

Summary

Sex-dependent protein handling in the rat renal tubular system was studied both qualitatively and quantitatively using the method of direct fluorescent protein tracing. The protein tracer, fluorescent ovalbumin, was synthesized by conjugating hen ovalbumin with fluorescein isothiocyanate (FITC), and the fluorescence characteristics of fluores-ceinthiocarbamyl (FTC)-ovalbumin conjugates with different degrees of labelling were studied. Heavily labelled tracer was intravenously injected into male and female rats, and both kidneys were perfused; the right kidney was then homogenized and used for quantitative fluorometric measurements, while the left kidney was perfusion fixed and prepared for fluorescence mciroscopy. The tubular reabsorption of fluorescent ovalbumin was studied 4 min and 10 min after the injection of different doses (1.4, 7.0 and 14.0 mg/kg body weight) of the tracer, and the tubular catabolism was investigated in animals killed 60 and 120 min after the injection. Fluorescence microscopy demonstrated that, in both sexes and regardless of the dose administered and the time after injection, specifically fluorescent protein or its degradation products was only present in the epithelial cells of the proximal tubule. With regard to sex-dependent differences in protein handling, fluorometry indicated that at 4 min (7.0 mg) and at 10 min (all doses) after injection, female animals had reabsorbed more fluorescent protein than males. With regard to the catabolic phase, both the fluorescence microscopy and the fluorometric results showed that the female rats had degraded the fluorescent tracer at a significantly higher rate than males. The results are discussed in connection with sex-dependent proteinuria in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asan E, Kugler P (1985) Maleate effects on kidney peptidases and proteinuria of male and female rats. Histochemistry 82:81–92

    Google Scholar 

  • Bode F, Ottosen PD, Madsen KM, Maunsbach AB (1980) Does transtubular transport of intact protein occur in the kidney? In: Maunsbach AB, Olson TS, Christensen EI (eds) Functional ultrastructure of the kidney. Academic Press, London New York, pp 389–395

    Google Scholar 

  • Carone FA, Peterson DR, Oparil S, Pullman TN (1979) Renal tubular transport and catabolism of proteins and peptides. Kidney Int 16:271–278

    Google Scholar 

  • Christensen EI (1976) Rapid protein uptake and digestion in proximal tubule lysosomes. Kidney Int 10:301–310

    Google Scholar 

  • Christensen EI, Maunsbach AB (1974) Intralysosomal digestion of lysozyme in renal proximal tubule cells. Kidney Int 6:396–407

    Google Scholar 

  • Curtain CC (1961) The chromatographic purification of fluorescein-antibody. J Histochem 9:484–486

    Google Scholar 

  • Falk N (1984) Nachweis exogener Meerrettichperoxidase im Hauptstück der Niere männlicher und weíblicher Ratten. Z mikrosk-anat Forsch 98:451–464

    Google Scholar 

  • Fothergill LA, Fothergill JE (1970) Structural comparison of ovalbumins from nine different species. Eur J Biochem 17:529–532

    Google Scholar 

  • Geisow MJ, Evans WH (1984) pH in the endosome. Measurements during pinocytosis and receptor-mediated endocytosis. Exp Cell Res 150:36–46

    Google Scholar 

  • Goldstein G, Slizys IS, Chase MW (1961) Studies on fluorescent antibody staining. I. Non-specific fluorescence with fluorescein-coupled sheep anti-rabbit globulins. J exp Med 114:89–110

    Google Scholar 

  • Herbert M (1983) Elektronenmikroskopisch-morphometrische Untersuchungen am Nierenhauptstück männlicher und weiblicher Ratten nach Kastration und Testosteronsubstitution. Z mikrosk-anat Forsch 97:189–239

    Google Scholar 

  • Holt S (1959) Factors governing the validity of staining methods for enzymes, and their bearing upon the Gomori acid phosphatase technique. Exp Cell Res (Suppl) 7:1–27

    Google Scholar 

  • Jedrzejewski K, Kugler P (1982) Peptidases in the kidney and urine of rats after castration. Histochemistry 74:63–84

    Google Scholar 

  • Kenny AJ (1979) Proteinases associated with cell membranes. In: Barret AJ (ed) Proteinases in mammalian cells and tissue. North Holland, Amsterdam New York Oxford, pp 393–444

    Google Scholar 

  • Kidwai SA, Ansari AA, Salahuddin A (1976) Effect of succinylation (3-Carboxypropionylation) on the conformation and immunological activity of ovalbumin. Biochem J 155:171–180

    Google Scholar 

  • Kierszenbaum F, Levison SA, Dandliker WB (1969) Fractionation of fluorescent-labeled proteins according to the degree of labeling. Anal Biochem 28:563–572

    Google Scholar 

  • Kiesewetter F, Kugler P (1985a) Sex different cytochrome-c uptake in the proximal tubule of the rat kidney. Histochemistry 82:557–564

    Google Scholar 

  • Kiesewetter F, Kugler P (1985b) Geschlechtsdifferenter lysosomaler Abbau von exogenem Cytochrom C im Nierenhauptstück der Ratte. Z mikrosk-anat Forsch 99:855–865

    Google Scholar 

  • Kugler P (1982a) On angiotensin-degrading aminopeptidases in the rat kidney. Adv Anat Embryol Cell Biol, vol 76

  • Kugler P (1982b) Quantitative histochemistry of the lysosomal dipeptidyl aminopeptidase II in the proximal tubule of the rat kidney. Histochemistry 76:557–566

    Google Scholar 

  • Kugler P, Vornberger G (1986) Renal cathepsin-B activities in rats after castration and treatment with sex hormones. Histochemistry (in press)

  • Loida Z, Gossrau R, Schiebler TH (1979) Enzyme histochemistry. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Maack T, Johnson V, Kau ST, Figueiredo J, Sigulem D (1979) Renal filtration, transport, and metabolism of low-molecular-weight proteins: A review. Kidney Int 16:251–270

    Google Scholar 

  • Maunsbach AB (1966) Observations on the segmentation of the proximal tubule in the kidney. Comparison of results from phase contrast, fluorescence and electron microscopy. J Ultrastruct Res 16:239–258

    Google Scholar 

  • McKinney RM, Spillane JT, Pearce GW (1966) A simple method for determining the labeling efficiency of fluorescein isothiocyanate products. Anal Biochem 14:421–428

    Google Scholar 

  • Nairn RC (1976) Fluorescent protein tracing. Churchill Livingstone, Edinburgh London New York

    Google Scholar 

  • Nisbet AD, Saundry RH, Moir AJG, Fothergill LA, Fothergill JE (1981) The complete amino-acid sequence of hen ovalbumin. Eur J Biochem 115:335–345

    Google Scholar 

  • Nguyen NY, Chrambach A (1978) A test of the resolving power of cascade electrofocusing and cascade stacking: separation of BSA from ovalbumin. Anal Biochem 87:576–585

    Google Scholar 

  • Ottosen PD, Bode F, Madsen KM, Maunsbach AB (1979) Renal handling of lysozyme in the rat. Kidney Int 15:246–254

    Google Scholar 

  • Perlman GE (1955) Nature of phosphorus linkages in phosphoproteins. Adv Prot Chem 10:1–30

    Google Scholar 

  • Riggs JL, Loh PC, Eveland WC (1960) A simple fractionation method for preparation of fluorescein-labeled gamma globulin. Proc Soc Exp Biol 105:655–658

    Google Scholar 

  • Rühmke PH, Breekveldt-Kielich JC, van den Broecke-Siddré A (1970) Sex-associated urinary protein in the rat. Biochim Biophys Acta 200:275–283

    Google Scholar 

  • Schiller AA, Schayer RW, Hess EL (1952) Fluorescein-conjugated bovine albumin-physical and biological properties. J Gen Physiol 36:489–506

    Google Scholar 

  • Sellers AL, Goodman MC, Marmorston J, Smith M (1950) Sex differences in proteinuria in the rat. Am J Physiol 163:662–667

    Google Scholar 

  • Straus W (1967) Changes in intracellular location of small phagosomes (micropinocytotic vesicles) in kidney and liver cells in relation to time after injection and dose of horseradish peroxidase. J Histochem Cytochem 15:381–393

    Google Scholar 

  • Sumpio BE, Maack T (1982) Kinetics, competition, and selectivity of tubular absorption of proteins. Am J Physiol 243:379–392

    Google Scholar 

  • Weber K, Osborn M (1969) The reliability of molecular weight determinations by dodecylsulfate-polyacrylamide gel electrophoresis. J Biol Chem 244:4406–4412

    Google Scholar 

  • Wells AF, Miller CE, Nadel MK (1966) Rapid fluorescein and protein assay method for fluorescent-antibody conjugates. Appl Microbiol 14:271–275

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

In honour of Prof. P. van Duijn

Supported by the Deutsche Forschungsgemeinschaft (SFB 105)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asan, E., Kugler, P. & Schiebler, T.H. Sex-related differences in the handling of fluorescent ovalbumin by the proximal tubule of the rat kidney. Histochemistry 84, 408–417 (1986). https://doi.org/10.1007/BF00482971

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00482971

Keywords

Navigation