Skip to main content
Log in

The Effect of Protein Overload on Reabsorption of Different Proteins in Frog Renal Tubules

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Effects of short-term lysozyme loading and long-term administration of bovine serum albumin (BSA) on renal handling of green and yellow fluorescent proteins (GFP and YFP), as well as Alexa fluor-488-conjugated BSA (BSA-Alexa 488), were studied in grass frogs (Rana temporaria L.) and lake frogs (Rana ridibunda L.). Morphological analysis showed a more substantial decrease in the absorption capacity of proximal tubular cells after loading with lysozyme when compared with BSA loading. After BSA loading, the uptake of BSA-Alexa 488 was lower than GFP uptake, and functional changes were noted in some glomeruli. The decrease in reabsorption of GFP and YFP was accompanied by their appearance in the lumen of the distal nephron segments, as well as the formation of granular casts in the proximal tubules. The results, including the temporary nature of the observed effects, are important for comparing the reabsorption of various proteins and studying adaptive changes in nephrons at the initial stages of proteinuria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Natochin, Y.V., Glomerular ultrafiltration, Fiziologiya vodno-solevogo obmena i pochki (Physiology of Water and Electrolyte Balance and Kidneys), Natochin, Y.V., Ed., St. Petersburg, 1993, pp. 242–262.

  2. Verroust, P.J., Birn H., Nielsen, R., Kozyraki R., and Christensen, E.I., The tandem endocytic receptors megalin and cubilin are important proteins in renal pathology, Kidney Int., 2002, vol. 62, pp. 745–756. doi: 10.1046/j.1523-1755.2002.00501.x

  3. Christensen, E.I. and Gburek, J., Protein reabsorption in renal proximal tubule-function and dysfunction in kidney pathophysiology, Pediatr. Nephrol. (Berlin), 2004, vol. 19, pp. 714–721. doi: 10.1007/s00467-004-1494-0

  4. Gekle, M., Renal tubule albumin transport, Ann. Rev. Physiol., 2005, vol. 67, pp. 573–594. doi: 10.1146/annurev.physiol.67.031103.154845

  5. Tojo, A. and Kinugasa, S., Mechanisms of glomerular albumin filtration and tubular reabsorption, Int. J. Nephrol., 2012, vol. 2012, p. 481520. doi: 10.1155/2012/481520

  6. Natochin, Y.V. and Mukhin, N.A., Vvedenie v nefrologiyu (Introduction to Nephrology), Moscow, 2007.

  7. Jerums, G., Panagiotopoulos, S., Tsalamandris, C., Allen, T.J., Gilbert, R.E., and Comper, W.D., Why is proteinuria such an important risk factor for progression in clinical trials?, Kidney Int., 1997, vol. 63, pp. S87–S92.

  8. Abbate, M., Zoja, C., Corna, D., Capitanio, M., Bertani, T., and Remuzzi, G.J., In progressive nephropathies, overload of tubular cells with filtered proteins translates glomerular permeability dysfunction into cellular signals of interstitial inflammation, J. Am. Soc. Nephrol., 1998, vol. 9, pp. 1213–1224.

  9. Abbate, M., Zoja, C., and Remuzzi, G., How does proteinuria cause progressive renal damage? J. Am. Soc. Nephrol., 2006, vol. 17, pp. 2974–2984. doi: 10.1681/ASN.2006040377

  10. Gorriz, J.L. and Martinez-Castelao, A., Proteinuria: detection and role in native renal disease progression, Transplant. Rev., 2012, vol. 26, pp. 3–13. doi: 10.1016/j.trre.2011.10.002

  11. Poortmans, J.R., Rampaer, L., and Wolfs, J.C., Renal protein excretion after exercise in man, Eur. J. Appl. Physiol. Occup. Physiol., 1989, vol. 58, pp. 476–480. doi: 10.1007/BF02330700

  12. Montelpare, W.J., Klentrou, P., and Thoden, J., Continuous versus intermittent exercise effects on urinary excretion of albumin and total protein, J. Sci. Med. Sport, 2002, vol. 5, pp. 219–228. doi: 10.1016/s1440-2440(02)80006-8

  13. Viberti, G.C., Mogensen, C.E., Keen, H., Jacobsen, F.K., Jarrett R.J., and Christensen, C.K., Urinary excretion of albumin in normal man: the effect of water loading, Scand. J. Clin. Lab. Invest., 1982, vol. 42, pp. 147–157.

  14. Wiegmann, T.B., Chonko, A.M., Herron, K., MacDougall, M.L., and Moore, W.V., The effect of water loading on albumin excretion in type I diabetes mellitus, J. Diabet Complications, 1989, vol. 3, pp. 187–190. doi: 10.1016/0891-6632(89)90028-7

  15. Kutina, A.V. and Natochin, Y.V., An increase in the excretion of total protein and albumin by the human kidney during water diuresis, Hum. Physiol., 2009, vol. 35, pp. 612–615. doi: 10.1134/S0362119709050144

  16. Kutina, A.V., Zakharov, V.V., and Natochin, Y.V., Excretion of proteins by rat kidney during various types of diuresis, Bull. Exp. Biol. Med., 2008, vol. 146, pp. 671–674. doi: 10.1007/s10517-009-0366-9

  17. Ishola, D.A., Jr., van der Giezen, D.M., Hahnel B., Goldschmeding, R., Kriz, W., Koomans, H.A., and Joles, J.A., In mice, proteinuria and renal inflammatory responses to albumin overload are strain-dependent, Nephrol. Dial. Transplant., 2006, vol. 21, pp. 591–597. doi: 10.1093/ndt/gfi303

  18. Lee, D., Gleich, K., Fraser, S.A., Katerelos, M., Mount, P.F., and Power, D.A. Limited capacity of proximal tubular proteolysis in mice with proteinuria, Am. J. Physiol. Renal Physiol., 2013, vol. 304, pp. F1009–F1019. doi: 10.1152/ajprenal.00601.2012

  19. Prutskova, N.P. and Seliverstova, E.V., Absorption capacity of renal proximal tubular cells studied by combined injections of YFP and GFP in Rana temporaria L., Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 2013, vol. 166, pp. 138–146. doi: 10.1016/j.cbpa.2013.05.022

  20. Prutskova, N.P. and Seliverstova, E.V., Effect of different proteins on reabsorption of yellow fluorescent protein in the kidney of the brown frog Rana temporaria, J. Evol. Biochem. Physiol., 2016, vol. 52, pp. 246–251. doi: 10.1134/S0022093016030078

  21. Seliverstova, E.V. and Prutskova, N.P., Receptor-mediated endocytosis of lysozyme in renal proximal tubules of the frog Rana temporaria, Eur. J. Histochem., 2015, vol. 59, p. 2482. doi: 10.4081/ejh.2015.2482

  22. Seliverstova, E.V., and Prutskova, N.P., Tubular protein uptake pattern in the frog model (Rana temporaria): the effect of previous protein loading, J. Evol. Biochem. Physiol., 2017, vol. 53, pp. 215–224. doi: 10.1134/S0022093017030061

  23. Seliverstova, E.V. and Prutskova, N.P., Protein Reabsorption in the Amphibian Kidney: Comparative and Evolutionary Aspects, Evolutionary Physiology and Biochemistry—Advances and Perspectives, Simcic, I., Ed., IntechOpen, 2018, pp. 137–151. doi: 10.5772/intechopen.73659

  24. Waldherr, R. and Ritz, E., Edmund Randerath (1899–1961): Experimental proof for the glomerular origin of proteinuria, Kidney Int., 1999, vol. 56, pp. 1591–1596. doi: 10.1046/j.1523-1755.1999.00655.x

  25. Gross, M.L., Hanke, W., Koch, A., Ziebart, H., Amann, K., and Ritz, E., Intraperitoneal protein injection in the axolotl: the amphibian kidney as a novel model to study tubulointerstitial activation, Kidney Int., 2002, vol. 62, pp. 51–59. doi: 10.1046/j.1523-1755.2002.00402.x

  26. Gross, M.L., Piecha, G., Bierhaus, A., Hanke, W., Henle, T., Schirmacher, P., and Ritz, E., Glycated and carbamylated albumin are more "nephrotoxic" than unmodified albumin in the amphibian kidney, Am. J. Physiol. Renal Physiol., 2011, vol. 301, pp. F476–F485. doi: 10.1152/ajprenal.00342.2010

  27. Van Timmeren, M.M., Gross, M.L., Hanke, W., Klok, P.A., van Goor, H., Stegeman, C.A., and Bakker, S.J.L., Oleic acid loading does not add to the nephrotoxic effect of albumin in an amphibian and chronic rat model of kidney injury, Nephrol. Dial. Transplant., 2008, vol. 23, pp. 3814–3823. doi: 10.1093/ndt/gfn417

  28. Renkin, E.M. and Gilmore, J.P., Glomerular Filtration, Handbook of Physiology, Orloff, J. and Berliner, R.W., Eds., Baltimore, 1973, pp. 185–248.

  29. Tanner, G.A., Rippe, C., Shao, Y., Evan, A.P., and Williams, J.C., Jr., Glomerular permeability to macromolecules in the Necturus kidney, Am. J. Physiol. Renal Physiol., 2009, vol. 296, pp. F1269–F1278. doi: 10.1152/ajprenal.00371.2007

  30. Beyenbach, K.W., Comparative physiology of the renal proximal tubule, Renal Physiol., 1985, vol. 8, pp. 222–236. doi: 10.1159/000173056

  31. Zhou, X. and Vize, P.D., Proximo-distal specialization of epithelial transport processes within the Xenopus pronephric kidney tubules, Dev. Biol., 2004, vol. 271, pp. 322–338. doi: 10.1016/j.ydbio.2004.03.036

  32. Seliverstova, E.V., Burmakin, M.V., and Natochin, Yu.V., Renal clearance of absorbed intact GFP in the frog and rat intestine, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 2007, vol. 147, pp. 1067–1073. doi: 10.1016/j.cbpa.2007.03.019

  33. Christensen, E., Raciti, D., Reggiani, L., Verroust, P.J., and Brändli, A.W., Gene expression analysis defines the proximal tubule as the compartment for endocytic receptor-mediated uptake in the Xenopus pronephric kidney, Eur. J. Physiol., 2008, vol. 456, no. 6, pp. 1163–1176. doi: 10.1007/s00424-008-0488-3

  34. Prutskova, N.P. and Seliverstova, E.V., Tubular GFP uptake pattern in the rat and frog kidneys, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 2011, vol. 160, pp. 175–183. doi: 10.1016/j.cbpa.2011.05.029

  35. Prutskova, N.P. and Seliverstova, E.V., Reabsorption of albumin and other filtering proteins in the kidneys of amphibians, Ross. Fiziol. Zh. im. I.M. Sechenova, 2017, vol. 103, pp. 1395–1404.

  36. Christensen, E.I. and Maunsbach, A.B., Intralysosomal digestion of lysozyme in renal proximal tubule cells, Kidney Int., 1974, vol. 6, no. 6, pp. 396–407. doi: 10.1038/ki.1974.125

  37. Maack, T., Johnson, V., Kau, S.T., Figueiredo, J., and Sigulem, D., Renal filtration, transport, and metabolism of low-molecular-weight proteins: a review. Kidney Int., 1979, vol. 16, no. 3, pp. 251–270. doi: 10.1038/ki.1979.128

  38. Park, C.H. and Maack, T., Albumin absorption and catabolism by isolated perfused proximal convoluted tubules of the rabbit, J. Clin. Invest., 1984, vol. 73, pp. 767–777. doi: 10.1172/JCI111270

  39. Clapp, W.L., Park, C.H., Madsen, K.M., and Tisher, C.C., Axial heterogeneity in the handling of albumin by the rabbit proximal tubule, Lab. Invest., 1988, vol. 58, pp. 549–558.

  40. Slattery, C., Lee, A., Zhang, Y., Kelly, D.J., Thorn, P., Nikolic-Paterson, D.J., Tesch, G.H., and Poronnik, P., In vivo visualization of albumin degradation in the proximal tubule, Kidney Intern., 2008., vol. 74, pp. 1480–1486. doi: 10.1038/ki.2008.463

  41. Russo, L.M., Sandoval, R.M., McKee, M., Osicka, T.M., Collins, A.B., Brown, D., Molitoris, B.A., and Comper, W.D., The normal kidney filters nephrotic levels of albumin retrieved by proximal tubule cells: retrieval is disrupted in nephrotic states, Kidney Int., 2007, vol. 71, pp. 504–513. doi: 10.1038/sj.ki. 5002041

  42. Comper, W.D. and Russo, L.M., The Glomerular filter: An imperfect barrier is required for perfect renal function, Curr. Opin. Nephrol. Hypertens., 2009, vol. 18, pp. 336–342. doi: 10.1097/MNH.0b013e32832cb96a

  43. Christensen, E.I., Evidence for a decreased membrane recycling in the cells of renal proximal tubules exposed to high concentrations of ferritin, Cell Tissue. Res., 1986, vol. 243, no. 1, pp. 101–108. doi: 10.1007/bf00221857

  44. Hatae, T., Fujita, M., and Sagara, H., Helical structure in the apical tubules of several absorbing epithelia, Cell Tissue Res., 1986, vol. 244, pp. 39–46. doi: 10.1007/bf00218379

  45. Hatae, T., Fujita, M., Sagara, H., and Okuyama, K., Formation of apical tubules from large endocytic vacuoles in kidney proximal tubule cells during absorption of horseradish peroxidase, Cell Tissue Res., 1986, vol. 246, pp. 271–278. doi: 10.1007/bf00215889

  46. Hermo, L., Spier, N., and Nadler, N.J., Role of apical tubules in endocytosis in nonciliated cells of the ductuli efferentes of the rat: a kinetic analysis, Am. J. Anat., 1988, vol. 182, pp. 107–119. doi: 10.1002/aja.1001820202

  47. Prutskova, N.P. and Kutina, A.V., Comparative analysis of the fluorescent protein reabsorption in frog and rat kidneys, J. Evol. Biochem. Physiol., 2015, vol. 51, pp. 254–258. doi: 10.1134/S0022093015030106

  48. Gekle, M., Mildenberger, S., Freudinger, R., and Silbernagl, S., Long-term protein exposure reduces albumin binding and uptake in proximal tubule-derived opossum kidney cells, J. Am. Soc. Nephrol., 1998, vol. 9, pp. 960–968.

  49. Zhai, X.Y., Nielsen, R., Birn, H., Drumm, K., Mildenberger, S., Freudinger, R., Moestrup, S.K., Verroust, P.J., Christensen, E.I., and Gekle, M., Cubilin- and megalin-mediated uptake of albumin in cultured proximal tubule cells of opossum kidney, Kidney Int., 2000, vol. 58, pp. 1523–1533. doi: 10.1046/j.1523-1755.2000.00314.x

  50. Logan, A.G. and Morris, R., The handling of macromolecules by the kidney of the river lamprey, Lampetra fluviatilis, J. Exp. Biol., 1981, vol. 93, pp. 303–316.

  51. Mehta, D. and Malik, A.B., Signaling mechanisms regulating endothelial permeability, Physiol. Rev., 2006, vol. 86, pp. 279–367. doi: 10.1152/physrev.00012.200

  52. Akilesh, S., Huber, T.B., Wu, H., Wang, G., Hartleben, B., Kopp, J.B., Miner, J.H., Roopenian, D.C., Unanue, E.R., and Shaw, A.S., Podocytes use FcRn to clear IgG from the glomerular basement membrane, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 967–972. doi: 10.1073/pnas.0711515105

  53. Tojo, A., Onozato, M.L., Kitiyakara, C., Kinugasa, S., Fukuda, S., Sakai, T., and Fujita, T., Glomerular albumin filtration through podocyte cell body in puromycin aminonucleoside nephrotic rat, Med. Mol. Morphol., 2008, vol. 4, pp. 92–98. doi: 10.1007/s00795-008-0397-8

  54. Sarav, M., Wang, Y., Hack, B.K., Chang, A., Jensen, M., Bao, L., and Quigg, R.J., Renal FcRn reclaims albumin but facilitates elimination of IgG, J. Am. Soc. Nephrol., 2009, vol. 20, pp. 1941–1952. doi: 10.1681/ASN.2008090976

  55. Prabakaran, T., Christensen, E.I., Nielsen, R., and Verroust, P.J., Cubilin is expressed in rat and human glomerular podocytes, Nephrol. Dial. Transplant., 2012, vol. 27, pp. 3156–3159. doi: 10.1093/ndt/gfr794

  56. Sandoval, R.M., Molitoris, B.A., and Palygin, O., Fluorescent imaging and microscopy for dynamic processes in rats, Methods Mol. Biol., 2019, vol. 2018, pp. 151–175. doi: 10.1007/978-1-4939-9581-3_7

  57. Birn, H. and Christensen, E.I., Renal albumin absorption in physiology and pathology, Kidney Int., 2006, vol. 69, pp. 440–449. doi: 10.1038/sj.ki.5000141

  58. Zakharova, I.N., Osmanov, I.M., Machneva, E.B., Mumladze, E.B., Brazhnikova, O.V., Gavelya, N.V., Kasyanova, A.N., and Lupan, I.N., Urinary cylinders: what pediatrician and nephrologist need to know, Med. Sovet, 2019, no. 11, pp. 118–125. doi: 10.21518/2079-701X-2019-11-118-125

Download references

ACKNOWLEDGMENTS

We thank the Center for Collective Use at IEPhB RAS for providing the equipment for microscopic studies.

Funding

This study was supported by the State assignment to Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences (IEPhB RAS) (no. 075-00-776-19-02).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to this work.

Corresponding author

Correspondence to N. P. Prutskova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARTS

The conditions for keeping amphibians, methods of their collecting, and experimental protocols met all of the regulatory requirements for using laboratory animals approved by the Bioethics Committee at IEPhB RAS (Protocol no. 3 of 19.03.2019).

СONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Additional information

The original online version of this article was revised: the issue date is not January 2020, but January 2021

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prutskova, N.P., Seliverstova, E.V. The Effect of Protein Overload on Reabsorption of Different Proteins in Frog Renal Tubules. J Evol Biochem Phys 57, 101–114 (2021). https://doi.org/10.1134/S0022093021010105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093021010105

Keywords:

Navigation