Skip to main content
Log in

Abweichungen vom lokalen thermischen Gleichgewicht im axialen Kanal eines induktiv gekoppelten Argon-Plasmas

Deviations from local thermal equilibrium in the axial channel of an inductively coupled argon plasma — Influence of generator power and carrier gas flow rate

Einfluß der Generatorleistung und des Injektorgasstromes

  • Originalarbeiten
  • Spektroskopische Methoden
  • Published:
Fresenius' Zeitschrift für analytische Chemie Aims and scope Submit manuscript

Summary

Measurement of the excited state level population of a thermometric species like FeI injected into the axial channel of an inductively coupled plasma (ICP) is a powerful method to describe the plasma, even when the level population distribution in case of deviations from local thermal equilibrium (LTE) does not define a uniform plasma temperature.

The injection of the thermometric species as ferrocene vapour allows to study the specific influence of operating conditions and normal sample components such as water on the plasma conditions by adding independently the different components.

It is shown that deviations from LTE-state decrease with increasing generator power and decreasing carrier gas-flow rate and reach an axial minimum in the normal analytical zone (NAZ). Although differences of more than 1000 K between excitation temperature of low lying FeI-levels and levels close to the ionization-limit have been observed, deviation of the levels population density from an LTE-distribution is smaller than a factor of 5 under reasonable analytical conditions. Under such conditions the LTE-concept seems to be a useful first approximation to describe the thermodynamics of the ICP and to predict trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Kornblum GR, De Galan L (1977) Spectrochim Acta 23B:71

    Google Scholar 

  2. Boumans PWJM, De Boer FJ (1977) Spectrochim Acta 32B:365

    Google Scholar 

  3. Alder JF, Bombelka RM, Kirkbright GF (1980) Spectrochim Acta 35B:163

    Google Scholar 

  4. Furuta N, Nojiri Y, Fuwa K (1985) Spectrochim Acta 40B:423

    Google Scholar 

  5. Caughlin BL, Blades MW (1985) Spectrochim Acta 40B:987

    Google Scholar 

  6. Blades MW, Caughlin BL (1985) Spectrochim Acta 40B:579

    Google Scholar 

  7. Jarosz J, Mermet JM, Robin JP (1978) Spectrochim Acta 33B:55

    Google Scholar 

  8. Faires LM, Palmer BA, Engleman R (1984) Spectrochim Acta 39B:819

    Google Scholar 

  9. Caughlin BL, Blades MW (1985) Spectrochim Acta 40B:1539

    Google Scholar 

  10. Hasegawa T, Haraguchi H (1985) Spectrochim Acta 40B:1505

    Google Scholar 

  11. Walker Z, Blades MW (1986) Spectrochim Acta 41B:761

    Google Scholar 

  12. Kornblum GR, Smeyers-Verbeke J (1982) Spectrochim Acta 37B:83

    Google Scholar 

  13. Eddy TL (1985) J Quant Spectrosc Radiat Transf 33:197

    Google Scholar 

  14. Long StE, Browner RF (1986) Spectrochim Acta 41B:639

    Google Scholar 

  15. Magyar B, Lienemann P, Vonmont H (1986) Spectrochim Acta 41B:27

    Google Scholar 

  16. Tang YQ, Trassy C (1986) Spectrochim Acta 41B:143

    Google Scholar 

  17. Sperling M, Dannecker W (1986) Optimierung der Anregungsbedingungen im IC-Argonplasma. In: Welz B (Hrsg): Fortschritte in der atomspektrometrischen Spurenanalytik, Bd. 2. Verlag Chemie, Weinheim

    Google Scholar 

  18. Kalnicky DJ, Fassel VA, Kniseley RN (1977) Appl Spectrosc 31:137

    Google Scholar 

  19. Kawaguchi H, Ito T, Mizuike A (1981) Spectrochim Acta 36B:615

    Google Scholar 

  20. Broida HP, Shuler KE (1957) J Chem Phys 27:933

    Google Scholar 

  21. Barnett WB, Fassel VA, Kniseley RN (1970) Spectrochim Acta 25B:139

    Google Scholar 

  22. Bridges JM, Kornblith RL (1974) Astrophys J 192:793

    Google Scholar 

  23. Furuta N, Horlick G (1982) Spectrochim Acta 37B:53

    Google Scholar 

  24. Koirtyohann SR, Jones JS, Jester CP, Yates DA (1981) Spectrochim Acta 36B:49

    Google Scholar 

  25. Griem HR (1964) Plasma Spectroscopy, McGraw Hill, New York

    Google Scholar 

  26. Furuta N (1985) Spectrochim Acta 40B:1013

    Google Scholar 

  27. McWhirter RWP, Hearn AG (1963) Proc Phys Soc 82:641

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Herrn Prof. Dr. Reinhard Nast zum 75. Geburtstag gewidmet

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sperling, M., Dannecker, W. Abweichungen vom lokalen thermischen Gleichgewicht im axialen Kanal eines induktiv gekoppelten Argon-Plasmas. Z. Anal. Chem. 328, 455–463 (1987). https://doi.org/10.1007/BF00475964

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00475964

Navigation