Skip to main content
Log in

Evaluation of oxygen species during E–H transition in inductively coupled RF plasmas: combination of experimental results with global model

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Inductively coupled RF plasmas (ICP) in oxygen at low pressure have been intensively studied as a molecular and electronegative model system in the last funding period of the Collaborative Research Centre 24 “Fundamentals of Complex Plasmas”. The ICP configuration consists of a planar coil inside a quartz cylinder as dielectric barrier which is immersed in a large stainless steel vacuum chamber. In particular, the E–H mode transition has been investigated, combining experimental results from comprehensive plasma diagnostics as input for analytical rate equation calculation of a volume averaged global model. The averaged density was determined for electrons, negative ions O, molecular oxygen ground state O2(X3 Σg) and singlet metastable state O2(a1 g) from line-integrated measurements using 160 GHz Gaussian beam microwave interferometry coupled with laser photodetachment experiment and VUV absorption spectroscopy, respectively. Taking into account the relevant elementary processes and rate coefficients from literature together with the measured temperatures and averaged density of electrons, O2(X3 Σg) and O2(a1 g) the steady state density was calculated for O(3P), O2(b1 Σg+), O(1D), O(1S), O3, O, O2, and O3, respectively. The averaged density of negative ions O from the rate equation calculation is compared with the measured one. The normalized source and loss rates are discussed for O(3P), O2(b1 Σg+) and O.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.C. Boyle, A.R. Ellingboe, M.M. Turner, Plasma Sources Sci. Technol. 13, 493 (2004)

    Article  Google Scholar 

  2. T. Kitajima, Y. Takeo, Z.L. Petrović, T. Makabe, Appl. Phys. Lett. 77, 489 (2000)

    Article  ADS  Google Scholar 

  3. T. Denda, Y. Miyoshi, Y. Komukai, T. Goto, Z.L. Petrović, T. Makabe, J. Appl. Phys. 95, 870 (2004)

    Article  ADS  Google Scholar 

  4. J.K. Lee, O.V. Manuilenko, N.Y. Babaeva, H.C. Kim, J.W. Shon, Plasma Sources Sci. Technol. 14, 89 (2005)

    Article  ADS  Google Scholar 

  5. A.R. Gibson, T. Gans, Plasma Sources Sci. Technol. 26, 115007 (2017)

    Article  ADS  Google Scholar 

  6. B.G. Heil, R.P. Brinkmann, U. Czarnetzki, J. Phys. D: Appl. Phys. 41, 225208 (2008)

    Article  ADS  Google Scholar 

  7. Z. Donkó, J. Schulze, B.G. Heil, U. Czarnetzki, J. Phys. D: Appl. Phys. 42, 025205 (2009)

    Article  ADS  Google Scholar 

  8. J. Schulze, E. Schüngel, Z. Donkó, U. Czarnetzki, Plasma Sources Sci. Technol. 20, 015017 (2011)

    Article  ADS  Google Scholar 

  9. J. Schulze, A. Derzsi, K. Dittmann, T. Hemke, J. Meichsner, Z. Donkó, Phys. Rev. Lett. 107, 275001 (2011)

    Article  Google Scholar 

  10. J.T. Gudmundsson, I.G. Kouznetsov, K.K. Patel, M.A. Lieberman, J. Phys. D: Appl. Phys. 34, 1100 (2001)

    Article  ADS  Google Scholar 

  11. C.S. Corr, S. Gomez, W.G. Graham, Plasma Sources Sci. Technol. 21, 055024 (2012)

    Article  ADS  Google Scholar 

  12. E. Despiau-Pujo, P. Chabert, Plasma Sources Sci. Technol. 18, 045028 (2009)

    Article  ADS  Google Scholar 

  13. C. Küllig, K. Dittmann, Th. Wegner, I. Sheykin, K. Matyash, D. Loffhagen, R. Schneider, J. Meichsner, Contrib. Plasma Phys. 52, 836 (2012)

    Article  ADS  Google Scholar 

  14. A. Greb, K. Niemi, D. O’Connell, G.J. Ennis, N. MacGearailt, T. Gans, Phys. Plasmas 20, 053502 (2013)

    Article  ADS  Google Scholar 

  15. D.A. Toneli, R.S. Pessoa, M. Roberto, J.T. Gudmundsson, J. Phys. D: Appl. Phys. 48, 325202 (2015)

    Article  Google Scholar 

  16. Y.X. Liu, I. Korolov, E. Schüngel, Y.N. Wang, Z. Donkó, J. Schulze, Plasma Sources Sci. Technol. 26, 055024 (2017)

    Article  ADS  Google Scholar 

  17. K. Dittmann, K. Matyash, S. Nemschokmichal, J. Meichsner, R. Schneider, Contributions Plasma Phys. 50, 942 (2010)

    Article  ADS  Google Scholar 

  18. K. Matyash, R. Schneider, F. Taccogna, A. Hatayama, S. Longo, M. Capitelli, D. Tskhakaya, F.X. Bronold, Contrib. Plasma Phys. 47, 595 (2007)

    Article  ADS  Google Scholar 

  19. T. Teichmann, C. Küllig, K. Dittmann, K. Matyash, R. Schneider, J. Meichsner, Phys. Plasmas 20, 113509 (2013)

    Article  ADS  Google Scholar 

  20. Y.H. Im, J.S. Park, C.S. Choi, R.J. Choi, Y.B. Hahn, S.H. Lee, J.K. Lee, J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. Process. Meas. Phenom. 19, 1315 (2001)

    Article  Google Scholar 

  21. M.H. Shin, M.S. Park, N.E. Lee, J. Kim, C.Y. Kim, J. Ahn, J. Vac. Sci. Technol. A: Vac. Surf. Films 24, 1373 (2006)

    Article  Google Scholar 

  22. C.F. Carlström, R. van der Heijden, F. Karouta, R.W. van der Heijden, H.W.M. Salemink, E. van der Drift, J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. Process. Meas. Phenom. 24, L6 (2006)

    Article  Google Scholar 

  23. T. Ono, T. Akagi, T. Ichiki, J. Appl. Phys. 105, 013314 (2009)

    Article  ADS  Google Scholar 

  24. A. von Keudell et al., Plasma Process. Polym. 7, 327 (2010)

    Article  Google Scholar 

  25. O. Kylián, B. Denis, K. Stapelmann, A. Ruiz, H. Rauscher, F. Rossi, Plasma Process. Polym. 8, 1137 (2011)

    Article  Google Scholar 

  26. K. Yoshino, H. Matsumoto, T. Iwasaki, S. Kinoshita, K. Noda, S. Iwamori, Vacuum 93, 84 (2013)

    Article  ADS  Google Scholar 

  27. Th. Wegner, C. Küllig, J. Meichsner, Plasma Sources Sci. Technol. 26, 025006 (2017)

    Article  ADS  Google Scholar 

  28. K. Dittmann, C. Küllig, J. Meichsner, Plasma Sources Sci. Technol. 21, 024001 (2012)

    Article  ADS  Google Scholar 

  29. Th. Wegner, C. Küllig, J. Meichsner, Contrib. Plasma Phys. 55, 728 (2015)

    Article  ADS  Google Scholar 

  30. C. Küllig, Th. Wegner, J. Meichsner, Plasma Sources Sci. Technol. 24, 015027 (2015)

    Article  ADS  Google Scholar 

  31. Th. Wegner, C. Küllig, J. Meichsner, Plasma Sources Sci. Technol. 24, 044001 (2015)

    Article  ADS  Google Scholar 

  32. C. Küllig, K. Dittmann, J. Meichsner, Plasma Sources Sci. Technol. 19, 065011 (2010)

    Article  ADS  Google Scholar 

  33. Th. Wegner, C. Küllig, J. Meichsner, Plasma Sources Sci. Technol. 26, 025007 (2017)

    Article  ADS  Google Scholar 

  34. C. Küllig, K. Dittmann, J. Meichsner, Phys. Plasmas 19, 073517 (2012)

    Article  ADS  Google Scholar 

  35. C. Nowlan, C. McElroy, J. Drummond, J. Quant. Spectrosc. Radiat. Transf. 108, 371 (2007)

    Article  ADS  Google Scholar 

  36. M. Zaka-ul-Islam, K. Niemi, T. Gans, D. O’Connell, Appl. Phys. Lett. 99, 041501 (2011)

    Article  ADS  Google Scholar 

  37. J. Meichsner, M. Zeuner, B. Krames, M. Nitschke, R. Rochotzki, K. Barucki, Surf. Coat. Technol. 98, 1565 (1998)

    Article  Google Scholar 

  38. P.J. Chantry, J. Appl. Phys. 62, 1141 (1987)

    Article  ADS  Google Scholar 

  39. H. Singh, D.B. Graves, J. Appl. Phys. 88, 3889 (2000)

    Article  ADS  Google Scholar 

  40. A. Granier, F. Nicolazo, C. Vallée, A. Goullet, G. Turban, B. Grolleau, Plasma Sources Sci. Technol. 6, 147 (1997)

    Article  ADS  Google Scholar 

  41. J.P. Booth, O. Joubert, J. Pelletier, N. Sadeghi, J. Appl. Phys. 69, 618 (1991)

    Article  ADS  Google Scholar 

  42. S. Gomez, P.G. Steen, W.G. Graham, Appl. Phys. Lett. 81, 19 (2002)

    Article  ADS  Google Scholar 

  43. J.T. Gudmundsson, E.G. Thorsteinsson, Plasma Sources Sci. Technol. 16, 399 (2007)

    Article  ADS  Google Scholar 

  44. H. Hannesdottir, J.T. Gudmundsson, Plasma Sources Sci. Technol. 25, 055002 (2016)

    Article  ADS  Google Scholar 

  45. D.S. Stafford, M.J. Kushner, J. Appl. Phys. 96, 2451 (2004)

    Article  ADS  Google Scholar 

  46. J.T. Gudmundsson, Tech. rep., Science Institute, University of Iceland, 2004

  47. D.X. Liu, P. Bruggeman, F. Iza, M.Z. Rong, M.G. Kong, Plasma Sources Sci. Technol. 19, 025018 (2010)

    Article  ADS  Google Scholar 

  48. D.X. Liu, M.Z. Rong, X.H. Wang, F. Iza, M.G. Kong, P. Bruggeman, Plasma Process. Polym. 7, 846 (2010)

    Article  Google Scholar 

  49. B. Eliasson, U. Kogelschatz, Basic data for modelling of electrical discharges in gases: oxygen (Brown Boveri Forschungszentrum, Baden, 1986)

  50. S. Pancheshnyi, J. Phys. D: Appl. Phys. 46, 155201 (2013)

    Article  ADS  Google Scholar 

  51. D.L. Baulch, R.A. Cox, P.J. Crutzen, R.F. Hampson Jr., J.A. Kerr, J. Troe, R.T. Watson, J. Phys. Chem. Ref. Data 11, 327 (1982)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Meichsner.

Additional information

Contribution to the Topical Issue “Fundamentals of Complex Plasmas”, edited by Jürgen Meichsner, Michael Bonitz, Holger Fehske, Alexander Piel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meichsner, J., Wegner, T. Evaluation of oxygen species during E–H transition in inductively coupled RF plasmas: combination of experimental results with global model. Eur. Phys. J. D 72, 85 (2018). https://doi.org/10.1140/epjd/e2018-80720-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-80720-0

Navigation