Skip to main content
Log in

Entropy of flux relaxation and variational theory of simultaneous energy and mass transport governed by non-Onsager phenomenological equations

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

Using the relaxation phenomenological equations describing the non-stationary coupled heat and mass transport in the locally non-equilibrium fluid, an entropy of the diffusive fluxes of mass and energy is obtained. It is called the relaxation entropy as it is associated with the tendency of every element of the continuum to recover the thermodynamic equilibrium during vanishing of the fluxes. By exploiting this relaxation entropy a function of thermodynamical action is introduced, having the dimension of the product of entropy and time, whose stationarity conditions are the phenomenological and the conservation equations (constituting the hyperbolic set). The engineering significance of the variational principle given consists in finding approximate fields of transfer potentials and fluxes using the direct variational methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

thermal diffusivity

C p :

specific heat

C=[c ik]:

capacity matrix, equation (5)

c 0 :

propagation speed of second sound wave (assumed as a constant quantity)

D :

generalized matrix of diffusivities, equation (4)

H i :

Biot's vector connected with flux J i (J i =H i )

G=[g ik]:

inertial matrix, equation (2)

H=col (H 1, H 2 ... H n−1, H q ):

column matrix of Biot's vectors

h :

specific enthalpy

J q :

density of diffusive energy flux

J 1, J 2 ...J n−1 :

densities of diffusive mass fluxes

J=col (J 1, J 2 ...J n−1, J q ):

column matrix containing all independent fluxes

L=[L ik]:

Onsager matrix

M, M :

molar mass, matrix exponential function, respectively

r :

radius vector

s, s′ :

specific static entropy and total entropy, respectively

S, ST :

action functional and its surface term, respectively

T :

temperature

t :

time

\(u = {\text{col}}\left( {\frac{{\mu _n - \mu _1 }}{T} \ldots ,\frac{{\mu _n - \mu _{n - 1} }}{T},\frac{1}{T}} \right)\) :

column matrix of transfer potentials

V :

volume

\(\begin{gathered} X = {\text{col}}\left( {{\text{grad}}\frac{{\mu _n - \mu _1 }}{T} \ldots ,} \right. \hfill \\ \left. { {\text{grad}}\frac{{\mu _n - \mu _{n - 1} }}{T},{\text{grad}}\frac{1}{T}} \right) \hfill \\ \end{gathered} \) :

column matrix of classical thermodynamic forces

x, y, z :

cartesian coordinates

y=col (y 1, y 2 ...y n−1):

column matrix of independent mass fractions

z=col (y 1, y 2 ...y n−1, h):

column matrix of thermodynamic state

2 :

Laplace operator

Δs r :

relaxation entropy of unit mass

σ, σ′ :

classical and non-classical entropy source, respectively

δ :

variational symbol

ρ :

mass density

τ :

matrix of relaxation coefficients

μ i :

chemical potential of component i

Λ:

Lagrangian

q′ :

heat

q :

energy in coupled process

r :

relaxation

T :

transpose matrix

−1:

reverse matrix

∼:

functional for irreversible process

□:

specified distribution of potentials, u=u , or specified normal component of vector H i (H i )

References

  1. Kantorovich LV and Krylov VI (1958) Approximate methods of higher analysis. The Netherlands

  2. Finlayson BA and Scriven LE (1963) On the search for variational principles. Intern J Heat Mass Transer 10:799

    Google Scholar 

  3. Landau LD and Lifshitz EM (1959) Theoretical physics, ref. to Mechanics, The field theory, Theory of elasticity. New York: Pergamon Press

    Google Scholar 

  4. De Groot SR and Mazur P (1962) Non-equilibrium thermodynamics. Amsterdam: North Holland

    Google Scholar 

  5. Schechter RS (1969) The variational method in engineering. New York: McGraw Hill

    Google Scholar 

  6. Natanson L (1896) Über die Gezetze nicht umkehrbarer Vorgange. Z Phys Chem 21:193

    Google Scholar 

  7. Glansdorff P and Prigogine I (1971) Thermodynamic theory of structure stability and fluctuations. New York: Wiley

    Google Scholar 

  8. Biot MA (1970) Variational principles in heat transfer. Oxford: Oxford Univ Press

    Google Scholar 

  9. Lambermont J and Lebon G (1972) A rather general variational principle for purely dissipative non-stationary processes. Ann Phys 7:15

    Google Scholar 

  10. Nowacki W (1966) Dynamical problems of thermoelasticity. Warsaw: PWN

    Google Scholar 

  11. Parkus H (1959) Instationare Wärmespanungen. Wien: Springer Verlag

    Google Scholar 

  12. Gurtin ME (1964) Variational principles for linear elastodynamics. Arch Rat Mech Anal 16:34

    Google Scholar 

  13. Ainola LJ (1969) Variational principles for nonstationary thermal conduction problems. J of Eng Phys 12:466

    Google Scholar 

  14. Reddy JN (1975) A note on mixed variational principles for initial value problems. Q J Mech Appl Math 28:123

    Google Scholar 

  15. Wyrwał J (1976) Variational theorem for coupled viscoelastic thermal diffusion. MsD Thesis, Higher School of Engineering in Opole, Poland

    Google Scholar 

  16. Gyarmati I (1970) Non-equilibrium thermodynamics. Berlin: Springer

    Google Scholar 

  17. Gyarmati I (1969) On the ‘Governing principle of dissipative processes’ and its extension to nonlinear problems. Ann Phys 7:353

    Google Scholar 

  18. Luikov AV (1966) Application of irreversible thermodynamics methods for investigation of heat and mass transfer. Intern J Heat Mass Transfer 9:139

    Google Scholar 

  19. Cattaneo JC (1959) Sur une forme le l'équation eliminant le paradoxe d'une propagation instantanée. C R Hebd Seanc Acad Sci Paris 247:431

    Google Scholar 

  20. Vernotte P (1958) Les paradoxes de la théorie continue de l'équation de la chaleur. C R Hebd Seanc Acad Sci Paris 246:3154

    Google Scholar 

  21. Sieniutycz S (1977) The variational principles of classical type for non-coupled non-stationary irreversible transport processes with convective motion and relaxation. Int J Heat Mass Transfer 20:1221

    Google Scholar 

  22. Vujanovic B (1971) An approach to linear and nonlinear heat transfer problem using a Lagrangian. AIAAAJ 9:131

    Google Scholar 

  23. Lebon G (1976) A new variational principle for the non-linear unsteady heat conduction problem. Q Journ Appl Math 29:499

    Google Scholar 

  24. Sieniutycz S (1979) The wave equations for simultaneous heat and mass transfer in moving media — structure testing, time—space transformations and variational approach. Intern J Heat Mass Transfer 22:585

    Google Scholar 

  25. Lebon G (1978) Derivation of generalized Fourier and Stokes-Newton equations based on the thermodynamics of irreversible processes. Bull Soc Roy Belgique, Classe des Sciences LXIV:456

    Google Scholar 

  26. Sieniutycz S (1981) Thermodynamics of coupled heat mass and momentum transport with finite propagation speed. I — Basic ideas of theory. Intern J Heat Mass Transfer 24:1723

    Google Scholar 

  27. Nettleton RE (1960) Relaxation theory of thermal conduction in liquids. Physics fluids 3:216

    Google Scholar 

  28. Gyarmati I (1977) On the wave approach to thermodynamics and some problems of nonlinear theories. J Non-Equilibrium Thermodyn 2:233

    Google Scholar 

  29. Jou D, Casas-Vazques J and Lebon G (1979) A dynamical interpretation of second order constitutive equations of hydrodynamics. J Non-Equilib Thermodyn 4:349

    Google Scholar 

  30. Lebon G, Jou D and Casas-Vazques J (1980) An extension of the local equilibrium hypothesis. J Phys A 13:275

    Google Scholar 

  31. Chester M (1963) Second sound in solids. Phys Rev 131:2013

    Google Scholar 

  32. Prohofsky EW and Krumhansl JA (1964) Second sound propagation in dielectric solids. Phys Rev A 133:1403

    Google Scholar 

  33. Guyer RA and Krumhansl JA (1964) Dispersion relation for second sound in solids. Phys Rev A 133:1411

    Google Scholar 

  34. Maxwell JC (1967) On the dynamical theory of gases. Phil Trans R Soc 157:49

    Google Scholar 

  35. Bubnov VA (1976) On the characterization of the heat exchange with finite propagation speed in an acoustic wave. Inzh Fiz Zurn 31:531

    Google Scholar 

  36. Pellam R (1961) Modern physics for the engineer, Chapter 6. New York: McGraw Hill

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sieniutycz, S. Entropy of flux relaxation and variational theory of simultaneous energy and mass transport governed by non-Onsager phenomenological equations. Appl. Sci. Res. 39, 87–103 (1982). https://doi.org/10.1007/BF00457012

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00457012

Keywords

Navigation