Skip to main content
Log in

Das Adenosinphosphat-System während Wachstum und Entwicklung von Acanthamoeba castellanii

The adenosinephosphate system during growth and development of Acanthamoeba castellanii

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The concentration of adenosine tri-, adenosine di-, and adenosine monophosphate in cells of Acanthamoeba castellanii was measured during the logarithmic growth phase and the stationary growth phase in which trophozoites were transformed into cysts. This developmental process was induced in three ways: by growth in nutrient medium to high cell density, by transferring cells in the logarithmic phase into a nutrient-free medium, and by mixing logarithmically growing cells with ethidium bromide.

In all cases, encystment is accompanied with a reduction of total adenosine phosphate content to about 85%, mainly because of a depletion of cellular ATP. The value of the adenosine phosphate energy charge in logarithmically growing amoebae is 0.83. During development the energy charge becomes stabilized at different values (between 0.58 and 0.81), characteristic to the mode of encystation.

A possible functional relationship between changes of the adenosine phosphate concentration and developmental processes of the amoeba is discussed.

Zusammenfassung

Die Konzentration von Adenosintri-, Adenosindi- und Adenosinmonophosphat wurde in Acanthamoeba castellanii währed der logarithmischen Wachstumsphase und der stationären Wachstumsphase, in deren Verlauf sich Trophozoiten zu Cysten entwickeln, bestimmt. Der Entwicklungsprozess wurde durch drei verschiedene Methoden hervorgerufen: Durch Wachstum im Nährmedium zu großer Zelldichte, durch Überführen von Amöben der logarithmischen Wachstumsphase in ein nährstoffreies Salzmedium und durch Versetzen logarithmisch wachsender Amöben mit Äthidiumbromid.

In allen Fällen wird der Adenosinphosphat-Gehalt in den Zellen im Laufe der Entwicklung um etwa 85% reduziert, wozu besonders die Abnahme des ATP-Gehaltes beiträgt. Die Adenosinphosphat-“energy charge” beträgt in logarithmisch wachsenden Amöben 0,83. Im Laufe der Entwicklung wird sie je nach Encystierungsbedingungen auf unterschiedlichen Werten stabilisiert (zwischen 0,58 und 0,81). Die Möglichkeit eines Zusammenhanges von Konzentrationsveränderungen der Adenosinphosphate und entwicklungsspezifischen Prozessen wird diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Aboud, M., Burger, M.: Adenosine triphosphate and catabolite repression of β-galactosidase in Escherichia coli. Biochem. biophys. Res. Commun. 45, 190–197 (1971)

    Google Scholar 

  • Atkinson, D. E.: Enzymes as control elements in metabolic regulation. In: The enzymes, Vol. 1, P. D. Boyer, ed., pp. 461–489, New York-London: Academic Press 1970

    Google Scholar 

  • Bohnert, H. J.: Nucleinsäuren der Mitochondrien und Expression ihres Genoms in Wachtum und Differenzierung von Acanthamoeba castellanii (Neff). Dissertation, Universität Heidelberg 1972

  • Borst, P.: Mitochondrial nucleic acids. Ann. Rev. Biochem., 41, 333–369 (1972)

    Google Scholar 

  • Butcher, R. W., Sutherland, E. W.: Adenosine 3′,5′-monophosphate in biological materials. I. Purification and properties of cyclic 3′,5′-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3′,5′-phosphate in human urine. J. biol. Chem. 237, 1244–1250 (1962)

    Google Scholar 

  • Byers, T. J., Rudick, V. L., Rudick, M. J.: Cell size macromolecule composition, nuclear number, oxygen consumption and cyst formation during two growth phases in unagitated cultures of Acanthamoeba castellanii. J. Protozool. 16, 693–699 (1969)

    Google Scholar 

  • Chapman, A. G., Fall, L., Atkinson, D. E.: Adenylate energy charge in Escherichia coli during growth and starvation. J. Bact. 108, 1072–1086 (1971)

    Google Scholar 

  • Drummond, G. I., Severson, D. L.: Kinetic properties of adenyl cyclase: Nature of fluoride and hormone stimulation. In: Advances in cyclic nucleotide research, Vol. 1, P. Greengard, G. A. Robison, eds., pp. 572. New York: Raven Press 1972

    Google Scholar 

  • Gessat, M., Jantzen, H.: Die Bedeutung von Adenosin-3′,5′-monophosphat für die Entwicklung von Acanthamoeba castellanii. Arch. Microbiol. 99, 155–166 (1974)

    Google Scholar 

  • Hsie, A. W., Jones, C., Puck, T. T.: Further changes in differentiation state accompanying the conversion of chinese hamster cells to fibroblastic form by dibutyryl adenosine cyclic 3′:5′-monophosphate and hormones. Proc. nat. Acad. Sci. (Wash.) 68, 1648–1652 (1971)

    Google Scholar 

  • Hsie, A. W., Puck, T. T.: Morphological transformation of chinese hamster cells by dibytyryl adenosine cyclic 3′:5′-monophosphate and testosterone. Proc. nat. Acad. Sci. (Wash.) 68, 358–361 (1971)

    Google Scholar 

  • Jantzen, H.: Änderung des Genaktivitätsmusters während der Entwicklung von Acanthamoeba castellanii. Arch. Mikrobiol. 91, 163–178 (1973)

    Google Scholar 

  • Jantzen, H.: Die Entwicklung von Acanthamoeba castellanii zur Cyste mit und ohne Veränderung des Genaktivitätsmusters. J. Protozool. (im Druck, 1974)

  • Kram, R., Mamont, P., Tomkins, G.: Pleiotypic control by adenosine 3′:5′-cyclic monophosphate: A model for growth control in animal cells. Proc. nat. Acad. Sci. (Wash.) 70, 1432–1436 (1973)

    Google Scholar 

  • Malkinson, A. M., Ashworth, J. M.: Adenosine 3′:5′-cyclic monophosphate concentrations and phosphodiesterase activities during axenic growth and differentiation of cells of the cellular slime mould Dictyostelium discoideum. Biochem. J. 134, 311–319 (1973)

    Google Scholar 

  • Monard, D., Janecek, J., Rickenberg, H. V.: Cyclic adenosine monophosphate diesterase activity and catabolite repression in Escherichia coli. Cold Spring Harbor Laboratory, ed., pp. 393–400 (1970)

  • Neff, R. J., Neff, R. H.: The biochemistry of amoebie encystment. Symp. Soc. exp. Biol. 23, 52–81 (1969)

    Google Scholar 

  • Neff, R. J., Ray, S. A., Benton, W. F., Wilborn, M.: Induction of synchronous encystment (differentiation) in Acanthamoeba sp. In: Methods in cell physiology, Vol. 1, D. M. Prescott, ed., pp. 55–83. New York-London: Academic Press 1964

    Google Scholar 

  • Otten, J., Johnson, G. S., Pastan, I.: Cyclic AMP levels in fibroblasts: Relationship to growth rate and contact inhibition of growth. Biochem. biophys. Res. Commun. 44, 1192–1198 (1971)

    Google Scholar 

  • Potter, J. L., Weisman, R. A.: Correlation of cellulose synthesis in vivo and in vitro during the encystment of Acanthamoeba. Develop. Biol. 28, 472–479 (1972)

    Google Scholar 

  • Prasad, K. N., Sheppard, J. R.: Inhibitors of cyclic-nucleotide phosphodiesterase induce morpholgical differentiation of mouse neuroblastoma cell culture. Exp. Cell Res. 73, 436–440 (1972)

    Google Scholar 

  • Raizada, M. K., Murti, C. R.: Transformation of trophic Hartmanella culbertsoni into viable cysts by cyclic 3′,5′-adenosine monophosphate. J. Cell Biol. 52, 743–748 (1972)

    Google Scholar 

  • Rudick, V. L.: Relationship between nucleic acid synthetic patterns and encystment in aging unagitated cultures of Acanthamoeba castellanii. J. Cell. Biol. 49, 498–506 (1971)

    Google Scholar 

  • Seifert, W., Paul, D.: Levels in cyclic AMP in sparse and dense cultures of growing and quiescent 3T3 cells. Nature New Biol. 240, 281–283 (1972)

    Google Scholar 

  • Shen, L. C., Fall, L., Walton, G. M., Atkinson, D. E.: Interaction between energy charge and metabolite modulation in the regulation of enzymes of amphibolic sequences. Phosphofructokinase and pyruvate dehydrogenase. Biochemistry 7, 4041–4045 (1968)

    Google Scholar 

  • Sheppard, J. R.: Restoration of contact-inhibited growth to transformed cells by dibutyryl adenosine 3′:5′-cyclic monophosphate. Proc. nat. Acad. Sci. (Wash.) 68, 1316–1320 (1971)

    Google Scholar 

  • Sheppard, J. R.: Difference in the cyclic adenosine 3′,5′-monophosphate levels in normal and transformed cells. Nature New Biol. 236, 14–16 (1972)

    Google Scholar 

  • Voichick, J., Elson, C., Granner, D., Shrago, E.: Relationship of adenosine 3′,5′-monophosphate to growth and metabolism of Tetrahymena pyriformis. J. Bact. 115, 68–72 (1973)

    Google Scholar 

  • Weisman, R. A., Moore, M. O.: Bead uptake as a tool for studying differentiation in Acanthamoeba. Exp. Cell Res. 54, 17–22 (1969)

    Google Scholar 

  • Winkler, H. H., Wilson, T. H.: The role of energy coupling in the transport of β-galactosides by E. coli. J. biol. Chem. 241, 2200–2211 (1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jantzen, H. Das Adenosinphosphat-System während Wachstum und Entwicklung von Acanthamoeba castellanii . Arch. Microbiol. 101, 391–399 (1974). https://doi.org/10.1007/BF00455955

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00455955

Key words

Navigation