Skip to main content
Log in

Growth changes of collagen cross-linking, calcium, and water content in bone

  • Original Articles
  • Published:
Archives of orthopaedic and traumatic surgery Aims and scope Submit manuscript

Summary

It has been claimed that the increase in the strength of growing bone is due to increased mineral content. The strength of collagen is based on intermolecular covalent cross-links, and it has also been proposed that cross-link changes increase bone strength. Measurements of the content of calcium, collagen, and water, as well as cross-link analyses, were performed on the tibial cortex of growing dogs. Within the age range studied (8–44 weeks), no changes in calcium content expressed as a percentage of dry bone weight were seen. Collagen content expressed as weight of hydroxyproline per dry bone weight showed a minor reduction during growth. However, water content decreased considerably up to an age of about 25 weeks, which implies a concomitant increase in the amount of bone material. Of the two cross-link main groups, reducible and nonreducible, it is only possible chemically to analyze the reducible. During the final part of the period of growth and mechanical maturation of the bones, the number of reducible cross-links decreases. This indicates a concomitant increase in the more stable nonreducible forms. The possible mechanical relevance of the chemical changes found during growth is discussed.

Zusammenfassung

Es ist früher angeführt worden, daß die zunehmende Festigkeit der Knochensubstanz wachsender Individuen an dem zunehmenden Mineralgehalt liegt. Die Festigkeit des Kollagens beruht auf dessen intermolekulären kovalenten Querverbindungen („cross-links”), und man hat auch angenommen, daß Änderungen der Querverbindungen die Stärke des Knochengewebes beeinflussen. Von der Tibiacortex wachsender Hunde ist die Menge an Kalzium, Kollagen und Wasser bestimmt worden, auch wurde eine Analyse der Querverbindungen durchgeführt. In der untersuchten Altersgruppe (8–44 Wochen) fanden wir keine Veränderungen des Kalziumgehaltes ausgedrückt per Trockengewicht der Knochensubstanz. Der Kollagengehalt verringerte sich etwas während der Wachstumsperiode. Bis zum Alter der Welpen von 25 Wochen verringerte sich der Wassergehalt deutlich, was bedeutet, daß die Menge Knochensubstanz im entsprechenden Maße zunahm. Von den zwei Hauptgruppen der „crosslinks”, den reduzierbaren und den nicht reduzierbaren, kann man chemisch die reduzierbaren analysieren. Während der letzten Wachstums- und Reifeperiode des Knochengewebes sinkt die Menge reduzierbarer „cross-links”. Dies zeigt eine gleichzeitige Zunahme der chemisch und mechanisch stabileren nicht reduzierbaren Formen. Die eventuelle mechanische Bedeutung dieser chemischen Veränderungen wird diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bailey AJ (1968) Intermediate labile intermolecular crosslinks in collagen fibres. Biochim Biophys Acta 160:447–453

    Google Scholar 

  2. Bailey AJ, Peach CM (1971) The chemistry of the collage cross-links: the absence of reduction of dehydrolysinonorleucine in vivo. Biochem J 121:257–259

    Google Scholar 

  3. Bailey AJ, Robins SP (1976) Current topics in the biosynthesis, structure and function of collagen. Sci Prog 63:419–444

    Google Scholar 

  4. Carlström D (1955) X-ray crystallographic studies on apatites and calcified structures. Acta Radiol [Suppl] (Stockh) 121

  5. Currey JD (1969) Technical note. The relationship between the stiffness and the mineral content of bone. J Biomech 2:477–480

    Google Scholar 

  6. Currey JD, Butler G (1975) The mechanical properties of bone tissue in children. J Bone Joint Surg [Am] 57:810–814

    Google Scholar 

  7. Davis NR (1973) A method for the determination of lysine-derived collagen cross-links. Biochem Biophys Res Commun 52:877–883

    Google Scholar 

  8. El Shorafa WM, Feaster JP, Ott EA (1979) Horse metacarpal bone. Age, ash content, cortical area and failure stress interrelationships. J Anim Sci 49:979–982

    Google Scholar 

  9. Fujii K, Tanzer ML (1974) Age-related changes in the reducible cross-links of human tendon collagen. FEBS Lett 43:300–302

    Google Scholar 

  10. Fujimoto D, Hirama M, Iwashita T (1982) Histidinoalanine, a new cross-linking amino-acid in calcified tissue collagen. Biochem Biophys Res Commun 104:1102–1106

    Google Scholar 

  11. Hammett FS (1925) A biochemical study of bone growth. I. Changes in the ash, organic matter, and water during growth (Mus Norvegicus albinus). J Biol Chem 64:409–428

    Google Scholar 

  12. Jonsson U, Netz P, Strömberg L (1984) Solid mechanics and strength of bone in young dogs. Acta Orthop Scand 55:446–451

    Google Scholar 

  13. Karube SH, Sindo H, Masuda M, Takizawa H, Hayashi Y, Igarashi M (1977) Effects of D-penicillamine and b-aminoproprionitrile on the cross-links of insoluble collagen from rat bones: the presence of the in vivo reduced cross-links. Calcif Tiss Res 23 [2]:199–200

    Google Scholar 

  14. Lees S (1979) A model for the distribution of HAP crystallites in bone-an hypothesis. Calcif Tiss Int 27:53–56

    Google Scholar 

  15. Lees S (1981) A model for bone hardness. J Biomech 14:561–567

    Google Scholar 

  16. Lees S, Davidson CL (1977) The role of collagen in the elastic properties of calcified tissues. J Biomech 10:473–486

    Google Scholar 

  17. Light ND, Bailey AJ (1982) Covalent cross-linking in collagen. In: Cunningam LW, Fredriksen DW (eds) Methods in enzymology. Academic, New York, pp 360–372

    Google Scholar 

  18. Mechanic G, Gallop PM, Tanzer ML (1971) The nature of cross-linking in collagens from mineralized tissues. Biochem Biophys Res Commun 45:644–653

    Google Scholar 

  19. Molnar Z (1959) Development of the parietal bone of young mice. 1. Crystals and minerals in frozen-dried preparations. J Ultrastruct Res 3:39–456

    Google Scholar 

  20. Ogawa T, Oho T, Tsuda M, Kaswanishi Y (1982) A novel fluor in insoluble collagen: a cross-linking moiety in collagen molecule. Biochem Biophys Res Commun 107:1252–1257

    Google Scholar 

  21. Ranta H (1978) Age-related changes in collagen crosslinking. Proc Finn Dent Soc [Suppl] 2:3–64

    Google Scholar 

  22. Robins SP, Bailey AJ (1975) The chemistry of the collagen cross-links. The mechanism of stabilization of the reducible intermediate cross-links. Biochem J 149:381–385

    Google Scholar 

  23. Robins SR, Shimomaki M, Bailey AJ (1973) The chemistry of the collagen cross-links. Age-related changes in the reducible components of intact bovine collagen fibres. Biochem J 131:771–780

    Google Scholar 

  24. Robinson RA, Elliot SR (1957) The water content of bone. J Bone Joint Surg [Am] 39:409–428

    Google Scholar 

  25. Royce PM, Barnes MJ (1977) Comparative study on collagen glycosylation in chick skin and bone. Biochim Biophys Acta 498:132–142

    Google Scholar 

  26. Rucker RB, Riggins RS, Laughlin R, Chan MM, Chen M, Tom K (1975) Effects of nutritional copper deficiency on the biomechanical properties of bone and arterial elastin metabolism in the chick. J Nutr 105:1062–1070

    Google Scholar 

  27. Termine JD, Posner AS (1967) Amorphous/crystalline interrelationships in bone mineral. Calc Tiss Res 1:8–23

    Google Scholar 

  28. Termine JD, Kleinman HK, Whitson WS, Conn KM, McGarvey ML, Martin GR (1981) Osteonectin, a bone-specific protein linking mineral to collagen. Cell 26:99–105

    Google Scholar 

  29. Vinz H (1970) Die Änderung der Festigkeitseigenschaften des kompakten Knochengewebes im Laufe der Alternsentwicklung. Gegenbaurs MorpholJahrb 115:257–272

    Google Scholar 

  30. Vinz H (1970) Untersuchungen über die Dichte, den Wasser- und den Mineralgehalt des kompakten menschlichen Knochengewebes in Abhängigkeit vom Alter. Gegenbaurs MorpholJahrb 115:273–283

    Google Scholar 

  31. Vinz H (1975) Über Alternsveränderungen der festigkeitsmechanischen Eigenschaften des menschlichen Knochengewebes. Beitr Orthop Traumatol 22:525–530

    Google Scholar 

  32. Vose GP, Kubala AL (1959) Bone strength-its relationship to X-ray determined ash content. Hum Biol 31:262–270

    Google Scholar 

  33. Walters C, Eyre DR (1983) Collagen crosslinks in human dentin: increasing content of hydroxypyridinium residues with age. Calcif Tissue Int 35:401–405

    Google Scholar 

  34. Woessner JF (1961) The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys 93:440–447

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jonsson, U., Ranta, H. & Strömberg, L. Growth changes of collagen cross-linking, calcium, and water content in bone. Arch. Orth. Traum. Surg. 104, 89–93 (1985). https://doi.org/10.1007/BF00454244

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00454244

Keywords

Navigation