Skip to main content
Log in

Static input-output relations in the spinal recurrent inhibitory pathway

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The static discharge rate of Renshaw cells (studied in deafferented, intercollicularly decerebrate cats) has a nonlinear dependence on the frequency of trains of stimulus impulses to α-motor axons in the ventral root. This dependence is well described by a rectangular hyperbola that approaches saturation with increasing stimulus frequency. The tendency to saturate is independent of the number of motor axons exciting a Renshaw cell. On average, the stimulus frequency at which the discharge rate reaches half its saturation value lies between 10 and 15 Hz. The effect of Renshaw cell activity — measured as the antidromic inhibition of individual α-motoneurons — reflects the form of the static frequency characteristics. An electric circuit analog of the Renshaw cell membrane is presented which serves to explain the qualitative features of the static input-output relations; the nonlinearity is the result of synapses with linear properties acting together at the cell membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alpern, A., Rushton, W.A.H., Torii, S.: Encoding of nerve signals from retinal rods. Nature 223, 1171–1172 (1969)

    Google Scholar 

  • Baylor, D.A., Fuortes, M.G.F.: Electrical responses of single cones in the retina of the turtle. J. Physiol. (Lond.) 207, 77–92 (1970)

    Google Scholar 

  • Beidler, L.M.: A theory of taste stimulation. J. gen. Physiol. 38, 133–139 (1954)

    Google Scholar 

  • Benecke, R., Takano, K., Schmidt, J., Henatsch, H.-D.: Tetanus toxin induced actions on spinal Renshaw cells and Ia-inhibitory interneurones during development of local tetanus in the cat. Exp. Brain Res. 27, 271–286 (1977)

    Google Scholar 

  • Bergmans, J., Burke, R., Lundberg, A.: Inhibition of transmission in the recurrent inhibitory pathway to motoneurones. Brain Res. 13, 600–602 (1969)

    Google Scholar 

  • Cleveland, S., Kuschmierz, A., Ross, H.-G.: Responses of Renshaw cells to step changes in input. J. Physiol. (Lond.) 284, 76–77P (1978)

    Google Scholar 

  • Cleveland, S., Ross, H.-G.: Dynamic properties of Renshaw cells: frequency response characteristics. Biol. Cybern. 27, 175–184 (1977)

    Google Scholar 

  • Cornish-Bowden, A., Eisenthal, R.: Statistical considerations in the estimation of enzyme kinetic parameters by the direct linear plot and other methods. Biochem. J. 139, 721–730 (1974)

    Google Scholar 

  • Cornish-Bowden, A., Porter, W.R., Trager, W.F.: Evaluation of distribution-free confidence limits for enzyme kinetic parameters. J. theor. Biol. 74, 163–175 (1978)

    Google Scholar 

  • Curtis, D.R., Ryall, R.W.: The synaptic excitation of Renshaw cells. Exp. Brain Res. 2, 81–96 (1966)

    Google Scholar 

  • Eccles, J.C., Eccles, R.M., Iggo, A., Lundberg, A.: Electrophysiological investigations on Renshaw cells. J. Physiol. (Lond.) 159, 461–478 (1961)

    Google Scholar 

  • Eccles, J.C., Fatt, P., Koketsu, K.: Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones. J. Physiol. (Lond.) 126, 524–562 (1954)

    Google Scholar 

  • Eisenthal, R., Cornish-Bowden, A.: The direct linear plot: a new graphical procedure for estimating enzyme kinetic parameters. Biochem. J. 139, 715–720 (1974)

    Google Scholar 

  • Fain, G.L., Dowling, J.E.: Intracellular recordings from single rods and cones in the mudpuppy retina. Science 180, 1178–1181 (1973)

    Google Scholar 

  • Frank, K., Fuortes, M.G.F.: Unitary activity of spinal interneurones of cats. J. Physiol. (Lond.) 131, 424–435 (1956)

    Google Scholar 

  • Fromm, C., Haase, J., Wolf, E.: Depression of the recurrent inhibition of extensor motoneurons by the action of group II afferents. Brain Res. 120, 459–468 (1977)

    Google Scholar 

  • Granit, R., Kernell, D., Shortess, G.K.: quantitative aspects of repetitive firing of mammalian motoneurones, caused by injected currents. J. Physiol. (Lond.) 169, 911–931 (1963)

    Google Scholar 

  • Granit, R., Renkin, B.: Net depolarization and discharge rate of motoneurones, as measured by recurrent inhibition. J. Physiol. (Lond.) 158, 461–475 (1961)

    Google Scholar 

  • Haase, J.: Die Transformation des Entladungsmusters der Renshaw-Zellen bei tetanischer antidromer Reizung. Pflügers Arch. ges. Physiol 276, 471–480 (1963)

    Google Scholar 

  • Haase, J., van der Meulen, J.P.: Effects of supraspinal stimulation on Renshaw cells belonging to extensor motoneurones. J. Neurophysiol. 24, 510–520 (1961)

    Google Scholar 

  • Haase, J., Vogel, B.: Direkte und indirekte Wirkungen supraspinaler Reizungen auf Renshaw-Zellen. Pflügers Arch. 325, 334–346 (1971)

    Google Scholar 

  • Henatsch, H.-D., Kaese, H.J., Langrehr, D., Meyer-Lohmann, J.: Einfluß des motorischen Cortex der Katze auf die Renshaw-Rückkopplungshemmung der Motoneurone. Pflügers Arch. ges. Physiol. 274, 51 (1961)

    Google Scholar 

  • Hultborn, H., Pierrot-Deseilligny, E.: Input-output relations in the pathway of recurrent inhibition to motoneurones in the cat. J. Physiol. (Lond.) 297, 267–287 (1979)

    Google Scholar 

  • Kato, M., Fukushima, K.: Effect of differential blocking of motor axons on antidromic activation of Renshaw cells in the cat. Exp. Brain Res. 20, 135–143 (1974)

    Google Scholar 

  • Katz, B.: Depolarization of sensory terminals and the initiation of impulses in the muscle spindle. J. Physiol. (Lond.) 111, 261–282 (1950)

    Google Scholar 

  • van Keulen, L.C.M.: Relations between individual motoneurones and individual Renshaw cells. Neurosci. Letters Suppl. 3, S 313 (1979)

    Google Scholar 

  • Knibestöl, M.: Stimulus-response functions of slowly adapting mechanoreceptors in the human glabrous skin area. J. Physiol. (Lond.) 245, 63–80 (1975)

    Google Scholar 

  • Koehler, W., Windhorst, U., Schmidt, J., Meyer-Lohmann, J., Henatsch, H.-D.: Diverging influences on Renshaw cell responses and monosynaptic reflexes from stimulation of capsula interna. Neurosci. Lett. 8, 35–39 (1978)

    Google Scholar 

  • Lloyd, D.P.C.: Reflex action in relation to pattern and peripheral source of afferent stimulation. J. Neurophysiol. 6, 111–119 (1943)

    Google Scholar 

  • Lloyd, D.P.C.: Monosynaptic reflex response of individual motoneurons as a function of frequency. J. gen. Physiol. 40, 435–450 (1957)

    Google Scholar 

  • Lloyd, D.P.C., McIntyre, A.K.: Monosynaptic reflex responses of individual motoneurons. J. gen. Physiol. 38, 771–787 (1955)

    Google Scholar 

  • Loewenstein, W.R.: The generation of electric activity in a nerve ending. Ann. N.Y. Acad. Sci. 81, 367–387 (1959)

    Google Scholar 

  • MacLean, J.B., Leffman, H.: Supraspinal control of Renshaw cells. Exp. Neurol. 18, 94–104 (1967)

    Google Scholar 

  • Martin, A.R.: The effect of membrane capacitance on non-linear summation of synaptic potentials. J. theor. Biol. 59, 179–187 (1976)

    Google Scholar 

  • Martin, B.R.: Statistics for physicists. London: Academic Press 1971

    Google Scholar 

  • Naka, K.I., Rushton, W.A.H.: An attempt to analyse colour reception by electrophysiology. J. Physiol. (Lond.) 185, 556–586 (1966)

    Google Scholar 

  • Piercey, M.F., Goldfarb, J.: Discharge patterns of Renshaw cells evoked by volleys in ipsilateral cutaneous and high-threshold muscle afferents and their relationship to reflexes recorded in ventral roots. J. Neurophysiol. 37, 274–302 (1974)

    Google Scholar 

  • Pompeiano, O., Wand, P., Sontag, K.-H.: The relative sensitivity of Renshaw cells to orthodromic group Ia volleys caused by static stretch and vibration of extensor muscles. Arch. ital. Biol. 113, 238–279 (1975)

    Google Scholar 

  • Porter, W.R., Trager, W.F.: Improved non-parametric statistical methods for the estimation of Michaelis-Menten kinetic parameters by the direct linear plot. Biochem. J. 161, 293–302 (1977)

    Google Scholar 

  • Rall, W.: Theoretical significance of dendritic trees for neuronal input-output relations. In: Neural theory and modelling, pp. 73–97. Reiss, R.F. (ed.). Stanford: Stanford University Press 1964

    Google Scholar 

  • Redman, S.J., Lampard, D.G., Annal, P.: Monosynaptic stochastic stimulation of cat spinal motoneurons. II. Frequency transfer characteristic of tonically discharging motoneurons. J. Neurophysiol. 31, 499–508 (1968)

    Google Scholar 

  • Renshaw, B.: Central effects of centripetal impulses in axons of spinal ventral roots. J. Neurophysiol. 9, 191–204 (1946)

    Google Scholar 

  • Ross, H.-G.: Experimentelle Untersuchungen und Modellvorstellungen zur quantitativen Charakterisierung der rekurrenten Inhibition spinaler Alpha-Motoneurone. Habilitationsschrift, Düsseldorf 1976

  • Ross, H.-G., Cleveland, S., Wolf, E., Haase, J.: Changes in the excitability of Renshaw cells due to orthodromic tetanic stimuli. Pflügers Arch. 344, 299–307 (1973)

    Google Scholar 

  • Ross, H.-G., Cleveland, S., Haase, J.: Contribution of single motoneurons to Renshaw cell activity. Neurosci. Lett. 1, 105–108 (1975a)

    Google Scholar 

  • Ross, H.-G., Cleveland, S., Haase, J.: Response of Renshaw cells to minimal antidromic input at various frequencies. Pflügers Arch. 355, R91 (1975b)

  • Ross, H.-G., Cleveland, S., Haase, J.: Quantitative relation between discharge frequencies of a Renshaw cell and an intracellularly depolarized motoneuron. Neurosci. Lett. 3, 129–132 (1976)

    Google Scholar 

  • Ryall, R.W., Piercey, M.F.: Excitation and inhibition of Renshaw cells by impulses in peripheral afferent nerve fibers. J. Neurophysiol. 34, 242–251 (1971)

    Google Scholar 

  • Tucker, D.: Physical variables in the olfactory stimulation process. J. gen. Physiol. 46, 453–489 (1963)

    Google Scholar 

  • Wilkinson, G.N.: Statistical estimations in enzyme kinetics. Biochem. J. 80, 324–332 (1961)

    Google Scholar 

  • Wilson, V.J.: Regulation and function of Renshaw cell discharge. In: Muscular afferents and motor control. Nobel Symposium 1, pp. 317–329. Granit, R. (ed.). Stockholm: Almquist u. Wiksell 1966

    Google Scholar 

  • Wilson, V.J., Talbot, W.H., Kato, M.: Inhibitory convergence upon Renshaw cells. J. Neurophysiol. 27, 1063–1079 (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor R. Granit, Stockholm, on the occasion of his 80th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cleveland, S., Kuschmierz, A. & Ross, HG. Static input-output relations in the spinal recurrent inhibitory pathway. Biol. Cybern. 40, 223–231 (1981). https://doi.org/10.1007/BF00453372

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00453372

Keywords

Navigation