Skip to main content
Log in

Thalamic reticular cells firing modes and its dependency on the frequency and amplitude ranges of the current stimulus

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The neurons of the Thalamic Reticular Nucleus (TRNn) respond to inputs in two activity modes called burst and tonic firing and both can be observed in different physiological states. The functional states of the thalamus depend in part on the properties of synaptic transmission between the TRNn and the thalamocortical and corticothalamic neurons. A dendrite can receive inhibitory and excitatory postsynaptic potentials. The novelties presented in this paper can be summarized as follows: First, it shows, through a computational simulation, that the burst and tonic firings observed in the TRNn soma could be explained as a product of random synaptic inputs on the distal dendrites, the tonic firings are generated by random excitatory stimuli, and the burst firings are generated by two different types of stimuli: inhibitory random stimuli, and a combination of inhibitory (from TRNn) and excitatory (from corticothalamic and thalamocortical neurons) random stimuli; second, according to in vivo recordings, we have found that the burst observed in the TRNn soma has graduate properties that are proportional to the stimuli frequency; and third, a novel method for showing in a quantitative manner the accelerando-decelerando pattern is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Contreras D, Curro D, Steriade M (1993) Electrophysiological properties of cat reticular thalamic neurones in vivo. J Phys 470:273–294

    CAS  Google Scholar 

  2. Crick F (1984) Function of the thalamic reticular complex: the searchlight hypothesis. Proc Natl Acad Sci USA 81:4586–4590

  3. Destexhe A, Contreras D, Steriade M, Sejnowski T, Huguenard J (1996) In viva, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons. J Neurosci 16(1):169–185

    CAS  PubMed  Google Scholar 

  4. Domich L, Oakson G, Steriade M (1986) Thalamic burst patterns in the naturally sleeping cat: a comparison between cortically projecting and reticularis neurons. J Physiol 379:402–405

    Article  Google Scholar 

  5. Hausser M, Spruston N, Stuart GJ (2000) Diversity and dynamics of dendritic signaling. Science 290(5492):739–744

  6. Hernández O, Jabba D, Muñoz F (2013) Data exporter: a complementary tool to export data simulation from neuron. 29(2):288–297

  7. Hines M, Carnevale N (2002) The NEURON simulation environment. MIT Press, Cambridge

    Google Scholar 

  8. Johnston D, Wu M (1994) Foundations of Cellular Neurophysiology. The MIT Press, Cambridge

    Google Scholar 

  9. Kim U, McCormick D (1998) The functional influence of burst and tonic firing mode on synaptic interactions in the thalamus. J Neurosci 18(22):9500–9516

    CAS  PubMed  Google Scholar 

  10. Liao YF, Tsai ML, Chen CC, Yen CT (1998) Involvement of the cav3.2 t-type calcium channel in thalamic neuron discharge patterns. Mol Pain 7(43):1–10

    CAS  Google Scholar 

  11. McCormick D, Prince D (1986) Acetylcholine induces burst firing in thalamic reticular neurones by activating a potassium conductance. Nat Neurosci 319:402–405

    CAS  Google Scholar 

  12. ModelDB (2012): Modeldb. http://senselab.med.yale.edu/modeldb/showmodel.asp?model=17663. Accessed Sept 13

  13. Mukhametov L, Rizzolatti G, Tradardi V (1970) Spontaneous activity of neurones of nucleus reticularis thalami in freely moving cats. J Physiol 210:651–667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Muñoz F, Fuentealba P (2012) Dynamics of action potential initiation in the gabaergic thalamic reticular nucleus in vivo. Plos One 7(1):1–13

    Article  Google Scholar 

  15. Nicolelis M, Fanselow E (2002) Thalamocortical optimization of tactile processing according to behavioral state. Nat Neurosci 5:517–523

    Article  CAS  PubMed  Google Scholar 

  16. Pinault D (2004) The thalamic reticular nucleus: structure, function and concept. Brain Res 46:1–13

    Article  Google Scholar 

  17. Pinault D, Deschenes M (1998) Anatomical evidence for a mechanism of lateral inhibition in the rat thalamus. Eur J Neurosci 10:3462–3469

    Article  CAS  PubMed  Google Scholar 

  18. QtiPlot (2012): Qtiplot. http://soft.proindependent.com/qtiplot.html. Accessed Sept 13

  19. Rhodes P, Gray C (1994) Simulations of intrinsically bursting neocortical pyramidal neurons. Neural Comput 6:1086–1110

    Article  Google Scholar 

  20. Scheibel ME, Scheibel AB (1966) Terminal axonal patterns in cat spinal cord I. The lateral corticospinal tract. Brain Res 2(4):333–350

    Article  CAS  PubMed  Google Scholar 

  21. Spreafico R, de Curtis M, Frassoni C, Avanzini G (1988) Dynamics of action potential initiation in the gabaergic thalamic reticular nucleus in vivo. J Neurosci 27:629–638

    Article  CAS  Google Scholar 

  22. Traub R (1979) Neocortical pyramidal cells: a model with dendritic calcium conductance reproduces repetitive firing and epileptic behavior. Brain Res 173:243–257

    Article  CAS  PubMed  Google Scholar 

  23. Traub R, Wong R, Miles R, Michelson H (1991) A model of a ca3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J Neurophysiol 66:635–650

    CAS  PubMed  Google Scholar 

  24. Long Xu N, Quan Ye C, Ming Poo M, Hui Zhang X (2006) Coincidence detection of synaptic inputs is facilitated at the distal dendrites after long-term potentiation induction. J Neurosci 26(11):3002–3009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Hernandez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernandez, O., Hernandez, L., Vera, D. et al. Thalamic reticular cells firing modes and its dependency on the frequency and amplitude ranges of the current stimulus. Med Biol Eng Comput 53, 37–44 (2015). https://doi.org/10.1007/s11517-014-1209-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-014-1209-z

Keywords

Navigation