Skip to main content
Log in

Different degradation pathways for glucose and fructose in Rhodopseudomonas capsulata

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

In Rhodopseudomonas capsulata the enzymes of the Entner-Doudoroff pathway and the Embden-Meyerhof pathway have been examined. Fructose-grown cells contained inducible activities of phosphoenolpyruvate-fructosephospho-transferase and 1-phosphofructokinase and only low levels of fructokinase and 6-phosphofructokinase. Although fructose-grown cells contained, in addition, all the enzymes of the Entner-Doudoroff pathway together with fructose-1,6-diphosphatase and phosphoglucose isomerase, the Entner-Doudoroff pathway was not operative in fructose catabolism and served only the degradation of glucose. The functional separation of glucose and fructose catabolism via the Entner-Doudoroff and a modified Embden-Meyerhof pathway, respectively, was confirmed by different approaches:

  1. 1.

    Radiorespirometric experiments with glucose and fructose labelled in positions 1, 2, 3+4 and 6 have been carried out. The pattern of 14CO2-evolution from position-labelled glucose was characteristic for the Entner-Doudoroff pathway, that from position-labelled fructose for the Embden-Meyerhof pathway.

  2. 2.

    In the presence of arsenite up to 50% of glucose-and fructose-carbon was excreted as pyruvate. Using 1-14C-glucose, 86% of the pyruvate was labelled in the carboxyl group, whereas using 1-14C-fructose only 19% of the pyruvate was labelled in the carboxyl group.

  3. 3.

    A glucose-6-phosphate dehydrogenase-deficient mutant was isolated which lacked a functional Entner-Doudoroff pathway but which was unaltered in its ability to grow on fructose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EMP:

Embden-Meyerhof pathway

EDP:

F.ntner-Doudoroff pathway

PPP:

pentose-phosphate pathway

PEP-fructose-PTS:

phosphoenolpyruvate-fructose-phosphotransferase

1-PFK:

1-phosphofructokinase

6-PFK:

6-phosphofructokinase

PGI:

phosphoglucose isomerase

F-6-P:

glucose-6-phosphate

F-1-P:

fructose-1-phosphate

G-6-P:

glucose-6-phosphate

6-PG:

6-phosphogluconate

FDP:

fructose-1-6-diphosphate

KDPG:

2-keto-3-deoxy-6-phosphogluconate

DHAP:

dihydroxyacetonephosphate

GAP:

glyceraldehyde-3-phosphate

Ru-5-P:

ribulose-5-phosphate

PEP:

phosphoenolpyruvate

References

  • Avigad, G., Englard, S., Pifko, S.: 5-Keto-d-fructose. IV. A specific reduced nicotinamide aldenine dinucleotide phosphate-linked reductase from Gluconobacter cerinus. J. biol. Chem. 241, 373–378 (1966)

    Google Scholar 

  • Baumann, P., Baumann, L.: Catabolism of d-fructose and d-ribose by Pseudomonas doudoroffii. I. Physiological studies and mutant analysis. Arch. Microbiol. 105, 225–240 (1975)

    Google Scholar 

  • Bergmeyer, H. U., Gawehn, K., Graßl, M.: Enzyme als biochemische Reagenzien. Phosphogluco-Mutase. In: Methoden der enzymatischen Analyse, Bd. 1 (H. U. Bergmeyer, Hrsg.), S. 532–533. Weinheim: Verlag Chemie 1974

    Google Scholar 

  • Conrad, R., Schlegel, H. G.: Different pathways for fructose and glucose utilization in Rhodopseudomonas capsulata and demonstration of 1-phosphofructokinase in phototrophic bacteria. Biochim. biophys. Acta (Amst.) 358, 221–225 (1974)

    Google Scholar 

  • Dawes, E. A., Holms, W. H.: Metabolism of Sarcina lutea. II. Isotopic evaluation of the routes of glucose utilization. Biochim. biophys. Acta (Amst.) 29, 82–91 (1958)

    Google Scholar 

  • Eidels, L., Preiss, J.: Carbohydrate metabolism in Rhodopseudomonas capsulata: Enzyme titers, glucose metabolism, and polyglucose polymer synthesis. Arch. Biochem. Biophys. 140, 75–89 (1970)

    Google Scholar 

  • Ferenci, T., Kornberg, H. L.: Pathway of fructose utilization by Escherichia coli. FEBS-Letters 13, 127–130 (1971)

    Google Scholar 

  • Ferenci, T., Kornberg, H. L.: The utilization of fructose by Escherichia coli. Properties of a mutant defective in fructose 1-phosphate kinase activity. Biochem. J. 132, 341–347 (1973)

    Google Scholar 

  • Fraenkel, D. G.: The phosphoenolpyruvate-initiated pathway of fructose metabolism in Escherichia coli. J. biol. Chem. 243, 6458–6463 (1968)

    Google Scholar 

  • Fromageot, C., Desnuelle, P.: Eine neue Methode zur Bestimmung der Brenztraubensäure. Biochem. Z. 279, 174–183 (1935)

    Google Scholar 

  • Gay, P., Rapoport, G.: Etude des mutants dépourvus de fructose-1-phosphate kinase chez Bacillus subtilis. C. R. Acad. Sci. (Paris) 271D, 374–377 (1970)

    Google Scholar 

  • Gee, D. L., Baumann, P., Baumann, L.: Enzymes of d-fructose catabolism in species of Beneckea and Photobacterium. Arch. Microbiol. 103, 205–207 (1975)

    Google Scholar 

  • Gibson, M. S., Wang, C. H.: Utilization of fructose and glutamate by Rhodospirillum rubrum. Canad. J. Microbiol. 14, 493–498 (1968)

    Google Scholar 

  • Hanson, T. E., Anderson, R. L.: d-Fructose-1-phosphate kinase, a new enzyme instrumental in the metabolism of d-fructose. J. biol. Chem. 241, 1644–1645 (1966)

    Google Scholar 

  • Hanson, T. E., Anderson, R. L.: Phosphoenolpyruvate-dependent formation of d-fructose 1-phosphate by a four component phosphotransferase system. Proc. nat. Acad. Sci. (Wash.) 61, 269–276 (1968)

    Google Scholar 

  • Hsu, D. S., Reeves, R. E.: Improved purification of 1-phosphofructokinase from Bacteroides symbiosus and some properties of the enzyme. Arch. Biochem. Biophys. 137, 59–64 (1970)

    Google Scholar 

  • von Hugo, H., Gottschalk, G.: Distribution of 1-phosphofructokinase and PEP: fructose phosphotransferase activity in Clostridia. FEBS-Letters 46, 106–108 (1974)

    Google Scholar 

  • Kahana, S. E., Lowry, O. H., Schulz, D. W., Passonneau, J. V., Crawford, E. J.: The kinetics of phosphoglucoisomerase. J. biol. Chem. 235, 2178–2184 (1960)

    Google Scholar 

  • Katz, J., Wood, H. G.: The use of C14O2 yields from glucose-1-and-6-C14 for the evaluation of the pathways of glucose metabolism. J. biol. Chem. 238, 517–523 (1963)

    Google Scholar 

  • Kistner, A., Kotzé, J. P.: Enzymes of intermediary metabolism of Butyrivibrio fibrisolvens and Ruminococcus albus grown under glucose limitation. Canad. J. Microbiol. 19, 1119–1127 (1973)

    Google Scholar 

  • Klemme, J. H.: Untersuchungen zur Photoautotrophie mit molekularem Wasserstoff bei neuisolierten schwefelfreien Purpurbakterien. Arch. Mikrobiol. 64, 29–42 (1968)

    Google Scholar 

  • Landau, B. R., Katz, J.: A quantitative estimation of the pathway of glucose metabolism in rat adipose tissue in vitro. J. biol. Chem. 239, 697–704 (1964)

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin-phenol reagent. J. biol. Chem. 193, 265–275 (1951)

    Google Scholar 

  • Marrs, B., Stahl, C. L., Lien, S., Gest, H.: Biochemical physiology of a respiration-deficient mutant of the photosynthetic bacterium Rhodopseudomonas capsulata. Proc. nat. Acad. Sci. (Wash.) 69, 916–920 (1972)

    Google Scholar 

  • Muntz, J. A., Carroll, R. E.: A method for converting glucose to fructose. J. biol. Chem. 235, 1258–1260 (1960)

    Google Scholar 

  • Newsholme, E. A., Robinson, J., Taylor, K.: A radiochemical enzymatic activity assay for glycerol kinase and hexokinase. Biochim. biophys. Acta (Amst.) 132, 338–346 (1967)

    Google Scholar 

  • Patni, N. J., Alexander, J. K.: Catabolism of fructose and mannitol in Clostridium thermocellum: Presence of phosphoenolpyruvate: fructose phosphotransferase, fructose-1-phosphate kinase, phosphoenolpyruvate: mannitol phosphotransferase, and mannitol-1-phosphate dehydrogenase in cell extracts. J. Bact. 105, 226–231 (1971)

    Google Scholar 

  • Pfennig, N., Lippert, K. D.: Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch. Mikrobiol. 55, 245–256 (1966)

    Google Scholar 

  • Probst, I., Schlegel, H. G.: Studies on a Gram-positive hydrogen bacterium, Nocardia opaca strain 1b. II. Enzyme formation and regulation under the influence of hydrogen or fructose as growth substrates. Arch. Mikrobiol. 88, 319–330 (1973)

    Google Scholar 

  • Robra, K. H.: Optimierung der Begasung in Submerskulturen von Hydrogenomonas eutropha H16 mit H2 und O2 und enzymatische KDPG-Synthese. Diss., Univ. Göttingen (1971)

  • Saier, M. H., Jr., Feucht, B. U., Roseman, S.: Phosphoenolpyruvate-dependent fructose phosphorylation in photosynthetic bacteria. J. biol. Chem. 246, 7819–7821 (1971)

    Google Scholar 

  • Sapico, V., Hanson, T. E., Walter, R. W., Anderson, R. L.: Metabolism of d-fructuse-6-phosphate kinase and d-fructose-1,6-diphosphatase. J. Bact. 96, 51–54 (1968)

    Google Scholar 

  • Sawyer, M. H., Baumann, P., Baumann, L., Berman, S. M., Cánovas, J. L., Berman, R. H.: Pathways of d-fructose catabolism in species of Pseudomonas. Arch. Microbiol. 112, 49–55 (1977)

    Google Scholar 

  • Sobel, M. E., Krulwich, T. A.: Metabolism of d-fructose by Arthrobacter pyridinolis. J. Bact. 113, 907–913 (1973)

    Google Scholar 

  • Szymona, M., Doudoroff, M.: Carbohydrate metabolism in Rhodopseudomonas spheroides. J. gen. Microbiol. 22, 167–183 (1960)

    Google Scholar 

  • Thauer, R. K., Rupprecht, E., Jungermann, K.: Separation of 14C-formate from CO2-fixation metabolites by isoionic-exchange chromatography. Analyt. Biochem. 38, 461–468 (1970)

    Google Scholar 

  • du Toit, P. J., Potgieter, D. J. J., de Villiers, V.: A study of the properties of 1-phosphofructokinase isolated from Clostridium pasteurianum. Enzymologia 43, 285–300 (1972)

    Google Scholar 

  • Vincente, M., Cánovas, J. L.: Glucolysis in Pseudomonas putida: Physiological role of alternative routes from the analysis of defective mutants. J. Bact. 116, 908–914 (1973)

    Google Scholar 

  • Wang, C. H., Stern, J., Gilmour, C. M., Klungsoyr, s., Reed, D. J., Bialy, J. J., Christensen, B. E., Cheldelin, V. H.: Comparative study of glucose catabolism by the radiorespirometric method. J. Bact. 76, 207–216 (1958)

    Google Scholar 

  • Wilkerson, L. S., Eagon, R. G.: Transport of citric acid by Aerobacter aerogenes. Arch. Biochem. Biophys. 149, 209–221 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conrad, R., Schlegel, H.G. Different degradation pathways for glucose and fructose in Rhodopseudomonas capsulata . Arch. Microbiol. 112, 39–48 (1977). https://doi.org/10.1007/BF00446652

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00446652

Key words

Navigation