Skip to main content
Log in

Noncyclic electron transport in chromatophores from photolithotrophically grown Rhodobacter sulfidophilus

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Chromatophores isolated from the marine phototrophic bacterium Rhodobacter sulfidophilus were found to photoreduce NAD with sulfide as the electron donor. The apparent K m for sulfide was 370 μM and the optimal pH was 7.0. The rate of NAD photoreduction in chromatophore suspensions with sulfide as the electron donor (about 7–12 μM/h·μmol Bchl) was approximately onetenth the rate of sulfide oxidation in whole cell suspensions. NAD photoreduction was inhibited by rotenone, carbonyl cyanide-m-chlorophenylhydrazone, and antimycin A. Sulfide reduced ubiquinone in the dark when added to anaerobic chromatophore suspensions. These results suggest that electron transport from sulfide to NAD involves an initial dark reduction of ubiquinone followed by reverse electron transport from ubiquinol to NAD mediated by NADH dehydrogenase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Bchl:

bacteriochlorophyll

CCCP:

carbonyl cyanide-m-chlorophenylhydrazone

MOPS:

3(N-morpholino)-propane sulfonate

Uq:

ubiquinone

References

  • Baccarini-Melandri A, Melandri BA (1978) Coupling factors. In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum, New York, pp 615–628

    Google Scholar 

  • Blankenship RE (1985) Electron transport in green photosynthetic bacteria. Photosynth Res 6:317–333

    Google Scholar 

  • Brune DC, Rivera Z, Jiménez LE (1984) Inhibition of photosynthetic sulfide oxidation by organic cations. Biochem Biophys Res Commun 121:755–761

    Google Scholar 

  • Clayton RK (1963) Toward the isolation of a photochemical reaction center in Rhodopseudomonas spheroides. Biochim Biophys Acta 75:312–323

    Google Scholar 

  • Davidson MW, Gray GO, Knaff DB (1985) Interaction of Chromatium vinosum flavocytochrome c552 with cytochromes c studied by affinity chromatography. FEBS Lett 187:155–159

    Google Scholar 

  • Drews G (1983) Mikrobiologisches Praktikum, 4. Auflage. Springer, Berlin Heidelberg New York, p 210

    Google Scholar 

  • Evans MCW (1965) The photooxidation of succinate by chromatophores of Rhodospirillum rubrum. Biochem J 95:661–668

    Google Scholar 

  • Evans MCW (1969) Ferredoxin: NAD reductase and the photoreduction of NAD by Chlorobium thiosulfatophilum. In: Metzner H (ed) Progress in photosynthesis research, vol 3. Laupp, Tübingen, pp 1474–1475

    Google Scholar 

  • Fajer J, Davis MS, Brune DC, Spaulding LD, Borg DC, Forman A (1977) Chlorophyll radicals and primary events. In: Olson JM, Hind G (eds) Brookhaven symposia in biology 28:74–104

  • Feher G, Okamura MY (1978) Chemical composition and properties of reaction centers. In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum, New York, pp 349–386

    Google Scholar 

  • Fischer U (1984) Cytochromes and iron sulfur protein in sulfur metabolism of phototrophic sulfur bacteria. In: Müller A, Krebs B (eds) Sulfur, its significance for the geo-, bio-, and cosmosphere and technology. Elsevier, Amsterdam, pp 383–407

    Google Scholar 

  • Fukumori Y, Yamanaka T (1979) Flavocytochrome c of Chromatium vinosum. Some enzymatic properties and subunit structure. J Biochem Tokyo 85:1405–1414

    Google Scholar 

  • Gabellini N, Bowyer JR, Hurt E, Melandri BA, Hauska G (1982) A cytochrome b/c1 complex with ubiquinol-cytochrome c2 oxidoreductase activity from Rhodopseudomonas spheroides GA. Eur J Biochem 126:105–111

    Google Scholar 

  • Hansen TA (1983) Electron donor metabolism in phototrophic bacteria. In: Ormerod JG (ed) Phototrophic bacteria: anaerobic life in the light. Blackwell, Oxford, pp 76–99

    Google Scholar 

  • Hansen TA, Veldkamp H (1973) Rhodopseudomonas sulfidophilus, nov. spec., a new species of the purple non-sulfur bacteria. Arch Mikrobiol 92:45–58

    Google Scholar 

  • Hatefi Y, Stiggall DL (1976) Metal-containing flavoprotein dehydrogenases. In: Boyer PD (ed) The enzymes, vol XIII, Academic Press, New York, pp 175–297

    Google Scholar 

  • Hatefi Y, Davis KA, Baltscheffsky H, Baltscheffsky M, Johansson BC (1972) Isolation and properties of succinate dehydrogenase from Rhodospirillum rubrum. Arch Biochem Biophys 152:613–618

    Google Scholar 

  • Hiraishi A, Hoshino Y (1984) Distribution of rhodoquinone in rhodospirillaceae and its taxonomic implications. J Gen Appl Microbiol 30:435–448

    Google Scholar 

  • Imhoff JF (1984) Quinones of phototrophic purple bacteria. FEMS Microbiol Lett 25:85–89

    Google Scholar 

  • Imhoff JF, Trüper HG, Pfennig N (1984) Rearrangement of the species and genera of the phototrophic “purple nonsulfur bacteria”. Int J Syst Bacteriol 34:340–343

    Google Scholar 

  • Keister DL, Yike NJ (1967) Energy-linked reactions in photosynthetic bacteria. I. Succinate-linked ATP-driven NAD+ reduction by Rhodospirillum rubrum chromatophores. Arch Biochem Biophys 121:415–422

    Google Scholar 

  • Klemme JH (1969) Studies on the mechanism of NAD-photoreduction by chromatophores of the facultative phototroph Rhodopseudomonas capsulata. Z Naturforsch 24b:67–76

    Google Scholar 

  • Klemme JH, Schlegel HG (1967) Photoreduktion von Pyridinnucleotid durch Chromatophoren aus Rhodopseudomonas capsulata mit molekularem Wasserstoff. Arch Mikrobiol 59:185–196

    Google Scholar 

  • Knaff DB (1978) Reducing potentials and the pathway of NAD+ reduction. In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum, New York, pp 629–640

    Google Scholar 

  • Knaff DB, Buchanan BB (1975) Cytochrome b and photosynthetic sulfur bacteria. Biochim Biophys Acta 376:549–560

    Google Scholar 

  • Kröger A (1978) Determination of contents and redox states of ubiquinone and menaquinone. In: Fleisher S, Packer L (eds) Methods in enzymology, vol LIII. Academic Press, New York, pp 579–591

    Google Scholar 

  • Mahler HR, Cordes EH (1971) Biological chemistry, second ed. Harper and Row, New York, p 662

    Google Scholar 

  • Michels PAM, Konings WM (1978) Structural and functional properties of chromatophores and membrane vesicles from Rhodopseudomonas sphaeroides. Biochim Biophys Acta 507: 353–368

    Google Scholar 

  • Neutzling O (1985) Untersuchungen zum dissimilatorischen Schwefelstoffwechsel in Rhodospirillaceae. Doctoral thesis, Univ. Bonn

  • Neutzling O, Pfleiderer C, Trüper HG (1985) Dissimilatory sulfur metabolism in phototrophic “non-sulphur” bacteria. J Gen Microbiol 131:791–798

    Google Scholar 

  • Parson WW (1978) Quinones as secondary electron acceptors. In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum, New York, pp 455–469

    Google Scholar 

  • Prince RC, Baccarini-Melandri A, Hauska GA, Melandri BA, Crofts AR (1975) Asymmetry of an energy transducing membrane. The location of cytochrome c2 in Rps. sphaeroides and Rps. capsulata. Biochim Biophys Acta 387:212–227

    Google Scholar 

  • Redfearn E (1967) Redox reactions of ubiquinone in Rhodospirillum rubrum. Biochim Biophys Acta 131:218–220

    Google Scholar 

  • Trüper HG (1981) Photolitrophic sulfur oxidation. In: Bothe H, Trebst A (eds) Biology of inorganic nitrogen and sulfur. Springer, Berlin, pp 199–211

    Google Scholar 

  • Trüper HG, Fischer U (1982) Anaerobic oxidation of sulfur compounds as electron donors for bacterial photosynthesis. Phil Trans R Soc Lond B 298:529–542

    Google Scholar 

  • Van Gemerden H (1984) The sulfide affinity of phototrophic bacteria in relation to the location of elemental sulfur. Arch Microbiol 139:289–294

    Google Scholar 

  • Weast RC (ed) (1979) CRC Handbook of chemistry and physics, 60. edn. CRC Press, Boca Raton, Fla, p D-167

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brune, D.C., Trüper, H.G. Noncyclic electron transport in chromatophores from photolithotrophically grown Rhodobacter sulfidophilus . Arch. Microbiol. 145, 295–301 (1986). https://doi.org/10.1007/BF00443662

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00443662

Key words

Navigation