Skip to main content
Log in

Superoxide dismutase and glutathione peroxidase in polymorphonuclear leucocytes

  • Original Investigations
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Superoxide dismutase (SOD) and glutathione peroxidase (GPX) protect aerobic organisms against the toxic superoxide anion and hydrogen peroxide, which are generated during phagocytosis by polymorphonuclear leucocytes (PMNs). PMNs of children with bacterial infections and with infectious hepatitis contained significantly elevated SOD activity, whereas GPX activity remained in the normal range. In contrast, PMNs of children with viral infections and rheumatoid arthritis exhibited a decreased SOD activity, while GPX activity was again unchanged. The children's age, sex or treatment did not effect the enzyme activities in PMNs. Since SOD generates bactericidal hydrogen peroxide and regulates the release of the toxic superoxide radical into the surrounding tissues, this study may add new understanding to the pathophysiological aspects of acute and chronic inflammatory processes.

Zusammenfassung

Superoxid-Dismutase (SOD) und Gluthathion-Peroxidase (GPX) schützen den aeroben Organismus vor den toxischen Sauerstoffmetaboliten Superoxid-Radical und Wasserstoffsuperoxid, die von Granulocyten während der Phagocytose gebildet werden. Granulocyten von Kindern mit bakteriellen Infekten oder infektiöser Hepatitis enthielten signifikant erhöhte SOD-Aktivitäten, während die GPX-Aktivitäten im normalen Bereich blieben. Im Gegensatz dazu führten virale Infekte oder rheumatoide Arthritiden in kindlichen Granulocyten zu einer verringerten SOD-Aktivität, veränderten jedoch auch in diesen Fällen nicht die GPX-Aktivität. Weder Alter noch Geschlecht oder Therapie der Kinder beeinflußten die Enzymaktivitäten in den Granulocyten. Da SOD das bakterizide Wasserstoffsuperoxid bildet und die Abgabe des toxischen Superoxid-Radicals in das umgebende Gewebe reguliert, stellen die Ergebnisse neue Aspekte zum pathophysiologischen Verständnis akuter und chronischer Entzündungsprozesse dar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Autor, A. P.: Reduction of Paraquat toxicity by superoxide dismutase. Life Sci. 14, 1309–1319 (1974)

    Google Scholar 

  2. Autor, A. P., Frank, L., Roberts, R. J.: Developmental characteristics of pulmonary SOD. Pediatr. Res. 10, 154–158 (1976)

    Google Scholar 

  3. Babior, B. M., Kipness, R. S., Curnutte, J. T.: Biological defense mechanisms. J. Clin. Invest. 52, 741–744 (1973)

    Google Scholar 

  4. Babior, B. M., Curnutte, J. T., Kipness, R. S.: Biological defense mechanisms. J. Clin. Lab. 85 (2), 235–244 (1975)

    Google Scholar 

  5. Babior, B. M.: Oxygen-dependent microbial killing by phagocytes. New Engl. J. Med. 298, 659–668 (1978)

    Google Scholar 

  6. Baehner, R. L., Murrmann, S. K., Davis, J., Johnston, R. B.: The role of superoxide anion and hydrogen peroxide in phagocytosis associated oxidative metabolic reactions. J. Clin. Invest. 56, 571–576 (1975)

    Google Scholar 

  7. Beauchamp, C. O., Fridovich, I.: Isoenzymes of superoxide dismutase from wheat germ. Biochim. Biophys. Acta 317, 50–64 (1973)

    Google Scholar 

  8. Beckmann, G., Lundgren, E., Tärnvik, A.: Superoxide dismutase isoenzymes in different human tissues. Hum. Hered. 23, 338–345 (1973)

    Google Scholar 

  9. Crapo, J. D., Tierney, D. F.: Superoxide dismutase and pulmonary oxygen toxicity. Am. J. Physiol. 226 (6), 1401–1407 (1974)

    Google Scholar 

  10. Cushing, L. S., Decker, W. E., Santos, F. K., Schulte, T. L., Huber, W.: Orgotein therapy for inflammation in horses. Modern Veter. Pract. 7, 17–21 (1973)

    Google Scholar 

  11. DeChatelet, L. R., McCall, C. E., McPhail, L. C., Johnston, R. B.: Superoxide dismutase activity in leukocytes. J. Clin. Invest. 53, 1197–1201 (1974)

    Google Scholar 

  12. DeChatelet, L. R., Shirley, P. S.: Bactericidal activity of superoxide anion and of hydrogen peroxide. Antimicrobial Agents and Chemotherapy 8, 146–153 (1975)

    Google Scholar 

  13. Fairshter, R. D., Wilson, A. F.: Paraquat poisoning—Manifestations and therapy. Am. J. Med. 59 (6), 751–753 (1975)

    Google Scholar 

  14. Flohé, L.: Die Glutathionperoxidase: Enzymologie und biologische Aspekte. Klin. Wschr. 49 (12), 669–683 (1971)

    Google Scholar 

  15. Frank, L., Autor, A. P., Roberts, R. J.: Oxygen therapy and Hyaline membrane disease: The effect of hyperoxia on pulmonary superoxide dismutase activity and the mediating role of plasma or serum. J. Pediatr. 90 (1), 105–110 (1977)

    Google Scholar 

  16. Fridovich, I.: Superoxide radical and superoxide dismutase. Accounts Chem. Res. 5 (10), 321–326 (1972)

    Google Scholar 

  17. Fridovich, I.: Superoxide dismutases. Ann. Rev. Biochem. 44, 147–159 (1975)

    Google Scholar 

  18. Fridovich, I.: Oxygen: Boon and bane. Am. Scientist 63, 54–59 (1975)

    Google Scholar 

  19. Goldstein, I. M., Cerqueira, M., Lind, S., Kaplan, H. B.: Evidence that superoxidegenerating system of human leukocytes is associated with the cell surface. J. Clin. Invest. 59, 249–254 (1977)

    Google Scholar 

  20. Gregory, E. M., Fridovich, I.: Induction of superoxide dismutase by molecular oxygen. J. Bacteriol. 114 (2), 543–548 (1973)

    Google Scholar 

  21. Gregory, E. M., Fridovich, I.: Oxygen toxicity and the superoxide dismutase. J. Bacteriol. 114 (3), 1193–1197 (1973)

    Google Scholar 

  22. Gutteridge, J. M.: Superoxide dismutase and free radicals in clinical chemistry. Ann. Clin. Biochem. 13 (3), 393–398 (1976)

    Google Scholar 

  23. Hartz, J. W., Deutsch, H. F.: Subunit structure of human superoxide dismutase. J. Biol. Chem. 247 (21), 7043–7050 (1972)

    Google Scholar 

  24. Holmes, B., Park, B. H., Malawista, S. E., Quie, P. G., Nelson, D. L., Good, R. A.: Chronic granulomatous disease in females: A deficiency of leukocyte glutathione peroxidase. N. Engl. J. Med. 283, 217–221 (1970)

    Google Scholar 

  25. Horecker, B. L., Kornberg, A.: The extinction coefficient of the reduced band of pyridine nucleotides. J. Biol. Chem. 175, 385–390 (1948)

    Google Scholar 

  26. Johnston, R. B., Keele, B. B., Misra, H. P., Lehmeyer, J. E., Webb, L. S., Baehner, R. L., Rajagopalan, K. V.: The role of superoxide anion in phagocytic bactericidal activity. J. Clin. Invest. 55, 1357–1372 (1975)

    Google Scholar 

  27. Johnston, R. B., Lehmeyer, J. E.: Elaboration of toxic oxygen by-products by neutrophils in a model of immune complex disease. J. Clin. Invest. 57, 836–841 (1977)

    Google Scholar 

  28. Karnovsky, M. L.: The metabolism of leukocytes. Sem. Haematol. 5, 156–165 (1968)

    Google Scholar 

  29. Kellogg, E. W., Fridovich, I.: Superoxide dismutase in the rat and mice as a function of age and longevity. J. Gerontol. 31 (4), 405–408 (1976)

    Google Scholar 

  30. Klebanoff, S.: A peroxidase-mediated antimicrobial system in leucocytes. J. Clin. Invest. 46, 1078 (1967)

    Google Scholar 

  31. Kobayashi, Y., Ishigame, K., Ishigame, Y., Usui, T.: Superoxide dismutase activity of human granulocytes and lymphocytes. Lancet 1977I, 865–866

  32. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)

    Google Scholar 

  33. Lund-Olesen, K., Meander, K. B.: Orgotein: A new anti-inflammatory metallprotein drug: Preliminary evaluation of clinical efficacy and safety in degenerative joint disease. Cur. Ther. Res. 16 (7), 706–717 (1974)

    Google Scholar 

  34. Marberger, H., Huber, W., Batsch, G., Schulte, T., Swoboda, P.: Orgotein: A new anti-inflammatory metallprotein drug evaluation of clinical efficacy and safety in inflammatory conditions of the urinary tract. Intern. Urology and Nephrology 6 (2), 61–74 (1974)

    Google Scholar 

  35. McCord, J. M., Fridovich, I.: Superoxide dismutase: An enzymic function for Erythrocuprein. J. Biol. Chem. 244 (22), 6049–6055 (1969)

    Google Scholar 

  36. McCord, J. M., Keele, B. B., Fridovich, I.: An enzyme-based theory of obligate anaerobiosis: The physiological function of superoxide dismutase. Proc. Natl. Acad. Sci. USA 68 (5), 1024–1027 (1971)

    Google Scholar 

  37. McCord, J. M.: Free radicals and inflammation protection of synovial fluid by superoxide dismutase. Science 185, 529–531 (1974)

    Google Scholar 

  38. Misra, H. P., Fridovich, I.: The univalent reduction of oxygen by reduced flavins and quinones. J. Biol. Chem. 247, 188–192 (1972)

    Google Scholar 

  39. Misra, H. P., Fridovich, I.: Superoxide dismutase and the oxygen enhancement of radiation lethality. Arch. Biochem. Biophys. 176, 577–581 (1976)

    Google Scholar 

  40. Oberley, L. W., Lindgren, A. L., Baker, S. A., Stevens, R. H.: Superoxide ion as the cause of the oxygen effect. Rad. Res. 68, 320–328 (1976)

    Google Scholar 

  41. Oyanagui, Y.: Inhibition of superoxide anion production in macrophages by anti-flammatory drugs. Biochem. Pharmacol. 25, 1473–1480 (1976)

    Google Scholar 

  42. Paglia, D. E., Valentine, W. N.: Studies of the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70 (1), 158–169 (1967)

    Google Scholar 

  43. Patriarca, P., Dri, P., Rossi, F.: Superoxide dismutase in leukocytes. Febs Letters 43 (3), 247–251 (1974)

    Google Scholar 

  44. Patriarca, P., Dri, P., Snidero, M.: Interference of myeloperoxidase with the estimation of superoxide dismutase activity. J. Lab. Clin. Med. 90 (2), 289–294 (1977)

    Google Scholar 

  45. Petkau, A., Kelly, K., Chelack, W. S., Barefoot, C.: Protective effect of superoxide dismutase on erythrocytes of X-irradiated mice. Biochem. Biophys. Res. Commun. 65 (3), 886–893 (1975)

    Google Scholar 

  46. Petkau, A., Chelack, W. S., Pleskach, S. D., Meeker, B. E., Brady, C. M.: Radioprotection of mice by superoxide dismutase. Biochem. Biophys. Res. Commun. 70 (2), 452–458 (1976)

    Google Scholar 

  47. Rest, R. F., Spitznagel, J. K.: Subcellular distribution of superoxide dismutase in human neutrophils. Biochem. J. 166, 145–153 (1977)

    Google Scholar 

  48. Rister, M., Baehner, R. L.: The alteration of superoxide dismutase, catalase, glutathione peroxidase, and NAD(P)H cytochrome c reductase in Guinea pig polymorphonuclear leukocytes and alveolar macrophages during hyperoxia. J. Clin. Invest. 58, 1174–1184 (1976)

    Google Scholar 

  49. Rister, M., Baehner, R. L.: A comparative study of superoxide dismutase activity in polymorphonuclear leukocytes, monocytes, and alveolar macrophages of Guinea pigs. J. Cell Physiol. 87, 345–356 (1976)

    Google Scholar 

  50. Rister, M., Baehner, R. L.: Effect of Hyperoxia on superoxide anion and hydrogen peroxide production of polymorphonuclear leukocytes and alveolar macrophages. Brit. J. Haematol. 36, 241–248 (1977)

    Google Scholar 

  51. Rister, M., Baehner, R. L.: Neue Aspekte der Toxizität des Sauerstoffs. Dtsch. Med. Wschr. 103, 977–981 (1978)

    Google Scholar 

  52. Salin, M. L., McCord, J. M.: Superoxide dismutase in polymorphonuclear leukocytes. J. Clin. Invest. 54, 1005–1009 (1974)

    Google Scholar 

  53. Salin, M. L., McCord, J. M.: Free radicals and inflammation protection of phagocytosing leukocytes by superoxide dismutase. J. Clin. Invest. 56, 1319–1323 (1975)

    Google Scholar 

  54. Sbarra, A. I., Karnovsky, M. L.: The biological basis of phagocytosis. J. Biol. Chem. 234, 1355 (1959)

    Google Scholar 

  55. Simon, L. M., Liu, J., Theodore, J., Robin, E. D.: Effect of hyperoxia, hypoxia and maturation on superoxide dismutase (SOD) activity in isolated alveolar macrophages. Am. Rev. Respiratory Disease 115 (2), 279–284 (1977)

    Google Scholar 

  56. Stevens, C., Goldblatt, M. J., Freedman, J. C.: Lack of erythrocyte syperoxide dismutase change during human senescence. Mechanisms of Ageing Development 4, 415–421 (1975)

    Google Scholar 

  57. Tauber, A. I., Babior, B. M.: Evidence for hydroxyl radical production by human neutrophils. J. Clin. Invest. 60, 374–379 (1977)

    Google Scholar 

  58. Tyler, D. D.: A protective function of SOD during respir. chain activity. Biochem. Biophys. Acta 396 (3), 335–346 (1975)

    Google Scholar 

  59. Weening, R. S., Wever, R., Roos, D.: Quantitative aspects of the production of superoxide radicals by phagocytizing human granulocytes. J. Lab. Clin. Med. 85, 245–252 (1975)

    Google Scholar 

  60. Weiss, S. J., King, G. W., LoBuglio, A. F.: Evidence for hydroxyl radical generation by human neutrophils. J. Clin. Invest. 60, 370–373 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Deutsche Forschungsgemeinschaft (Ri 275/2)

This study contains data of a thesis submitted as part of the requirement for an M.D.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rister, M., Bauermeister, K., Gravert, U. et al. Superoxide dismutase and glutathione peroxidase in polymorphonuclear leucocytes. Eur J Pediatr 130, 127–136 (1979). https://doi.org/10.1007/BF00442349

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00442349

Key words

Navigation