Skip to main content
Log in

Chemical modification of the polymer surface and consequences on electrooptical properties of liquid crystal—polymer composites

  • Published:
Molecular Engineering

Abstract

In order to improve our understanding of the mechanisms involved in the electrooptical effects of liquid crystal—polymer composites, and to identify the relevant parameters of these complex systems, we have investigated the influence of the chemical nature of the polymer surface on the anchoring of the liquid crystal. Our method consists in removing the liquid crystal from the composite by dissolution followed by supercritical drying of the solvent. The surface of the polymer is then modified by different reagents and the liquid crystal is reintroduced to the cell.

Comparison of the results shows that for a cyanobiphenyl liquid crystal, fluorinated or hydroxylated chemical moieties on the surface of the polymer induce a stronger anchoring than alkyl moieties. This phenomenon seems to be due to the enhanced chemical compatibility between the liquid crystal and the surface of the polymer in the case of alkyl moieties. Finally, the study has shown that a reduction of anchoring of the liquid crystal is responsible for a decrease in driving voltage, rise time and hysteresis and an increase in decay time and off-state transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L.West: Mol. Cryst. Liq. Cryst. Inc. Nonlin. Opt. 157, 427 (1988).

    Google Scholar 

  2. P. S.Drzaic: J. Appl. Phys. 60, 2142 (1986).

    Google Scholar 

  3. J. L.West: ACS Symp. Ser. 435, 475 (1990); L. Bouteiller, E. Chastaing, P. Le Barny, F. Massié, P. Robin. Revue Technique Thomson-CSF 26, 115 (1994).

    Google Scholar 

  4. J. W.Doane: ‘Polymer dispersed liquid crystal displays’, in B.Bahadur (Ed.), Liquid Crystals Applications and Uses, Wold Scientific, Singapore, p. 362 (1990).

    Google Scholar 

  5. K.Takizawa, H.Kikuchi, H.Fujikake, and M.Okada: Appl. Phyl. Lett. 56, 999 (1990); K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa and K. Tada: Jpn. J. Appl. Phys. 33, 1346 (1994).

    Google Scholar 

  6. R. L.Sutherland, L. V.Natarajan, V. P.Tondiglia, and T. J.Bunning: Chem. Mater. 5, 1533 (1993); R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams: Appl. Phys. Lett. 64, 1074 (1994).

    Google Scholar 

  7. J. L.West, J. W.Doane, Z.Domingo, and P.Ukleja: Polymer Preprints 30, 530 (1989).

    Google Scholar 

  8. D. S.Parmar and J. J.Singh: Appl. Phys. Lett. 61, 2039 (1992); D. S. Parmar and J. J. Singh: Mol. Cryst. Liq. Cryst. 225, 183 (1993).

    Google Scholar 

  9. T.Kajiyama, Y.Nagata, S.Washizu, and M.Takayanagi: J. Membrane Sci. 11, 39 (1982); S. Shinkai, K. Torigoe, O. Manabe, and T. Kajiyama: J. Am. Chem. Soc. 109, 4458 (1987); J. A. Ratto, S. Ristori, F. Volino, M. Pineri, M. Thomas, M. Escoubes, and R. B. Blumstein: Chem. Mater. 5, 1570 (1993).

    Google Scholar 

  10. H.S.Kitzerow: Liq. Cryst. 16, 1 (1994); D. Coates: J. Mat. Chem. 5, 2063 (1995); L. Bouteiller and P. Le Barny: Liq. Cryst. 21, 157 (1996).

    Google Scholar 

  11. N. A.Vaz and G. P.Montgomery: J. Appl. Phys. 62, 3161 (1987); P. S. Drzaic and A. M. Gonzales: Mol. Cryst. Liq. Cryst. 222, 11 (1992).

    Google Scholar 

  12. G.Chidichimo, G.Arabia, A.Golemme, and J. W.Doane: Liq. Cryst. 5, 1443 (1989).

    Google Scholar 

  13. J.Erdmann, J. W.Doane, S.Zumer, and G.Chidichimo: SPIE Liq. Cryst. Chemistry, Physics and Applic. 1080, 32 (1989).

    Google Scholar 

  14. D.Coates: Displays 14, 94 (1993).

    Google Scholar 

  15. L. Bouteiller, P. Le Barny, P. Robin, J. C. Dubois: Proc. 14th Intern. Display Research Conf., p. 195 (1994).

  16. We decided to remove the liquid crystal from the composite rather than use a simple porous polymer film, so that the properties of our system be as close as possible to those of systems commonly used. In this way, the conclusions of our study are directly relevant.

  17. U.Larsson, R.Carlson, and J.Leroy: Acta Chemica Scand. 47, 380 (1993).

    Google Scholar 

  18. N.Requirand, H.Blancou, and A.Commeyras: Bull. Soc. Chim. Rance 130, 798 (1993).

    Google Scholar 

  19. L. Bouteiller: Ph.D. Thesis, Université Pierre et Marie Curie, Paris (1995).

  20. J.Fricke and A.Emmerling: J. Am. Ceram. Soc. 75, 2027 (1992).

    Google Scholar 

  21. K.Ogino and T.Otsuka: Kobunshu 42, 857 (1985).

    Google Scholar 

  22. N. Yamada, T. Hirai, N. Ohnishi, S. Kouzaki, F. Funada, and K. Awane: Proc. 12th Intern. Display Research Conf., p. 695 (1992).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouteiller, L., Le Barny, P., Robin, P. et al. Chemical modification of the polymer surface and consequences on electrooptical properties of liquid crystal—polymer composites. Mol Eng 6, 373–389 (1996). https://doi.org/10.1007/BF00440410

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00440410

Key words

Navigation