Skip to main content
Log in

Dielectric and electro-optical properties of polymer-stabilized liquid crystal system

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, we report the results of dielectric and electro-optical properties as a function of temperature for both pure liquid crystal matrix and polymer-stabilized liquid crystal (PSLC). The threshold and saturation voltages have been determined from transmission–voltage curves. We have studied the polymer domains formation in PSLC with variation of concentration of polymer in liquid crystal matrix. It is observed that the dielectric anisotropy of PSLC is significantly influenced by the polar order present in the polymer domains environment. A delicate interplay between the orientational order of liquid crystal and polymeric domains determines the molecular orientations of PSLC with respect to the director of the LC system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Sun, S.T. Wu, Recent advances in polymer network liquid crystal spatial light modulators. J. Polym. Sci. B Polym. Phys. 52, 183–192 (2014)

    Article  ADS  Google Scholar 

  2. I. Dierking, Recent developments in polymer stabilised liquid crystals. Polym. Chem. 1, 1153–1159 (2010)

    Article  Google Scholar 

  3. J. Zou, J. Fang, Adhesive polymer-dispersed liquid crystal films. J. Mater. Chem. 21, 9149–9153 (2011)

    Article  Google Scholar 

  4. J. Yan, L. Rao, M. Jiao, Y. Li, H.C. Cheng, S.T. Wu, Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications. J. Mater. Chem. 21, 7870–7877 (2011)

    Article  Google Scholar 

  5. J. Yan, S.T. Wu, Polymer effect on the electro-optic properties of blue-phase liquid crystals. SID Int. Symp. Dig. Tech. Pap. 42, 210–212 (2011)

    Article  Google Scholar 

  6. P.G. de Gennes, Scaling Concept in Planar Science (Cornel University press, Ithaca, 1979), chapter 5, p. 131

  7. D.O. Krimer, G. Demeter, L. Kramer, Pattern-forming instability induced by light in pure and dye-doped nematic liquid crystals. Phys. Rev. E 66, 031707 (2002)

    Article  ADS  Google Scholar 

  8. R. Kumar, K.K. Raina, Electrically modulated fluorescence in optically active polymer stabilised cholesteric liquid crystal shutter. Liq. Cryst. 41, 228–233 (2014)

    Article  Google Scholar 

  9. M. Inam, G. Singh, A.M. Biradar, D.S. Mehta, Effect of gold nano-particles on switch-on voltage and relaxation frequency of nematic liquid crystal cell. AIP Adv. 1, 042162 (2011)

    Article  ADS  Google Scholar 

  10. O. Buluy, S. Nepijko, V. Reshetnyak, E. Ouskova, V. Zadorozhnii, A. Leonhardt, M. Ritschel, G. Schönhense, Yu. Reznikov, Magnetic sensitivity of a dispersion of aggregated ferromagnetic carbon nanotubes in liquid crystals. Soft Matter 7, 644–649 (2011)

    Article  ADS  Google Scholar 

  11. S. Singh, J.K. Srivastava, R.K. Singh, in Polymer Dispersed Liquid Crystals, ed. by V.K. Thakur, M.R. Kessler. Liquid Crystalline Polymers: Fundamentals and Applications (Springer, 2015), Chapt 7

  12. P.S. Dzaic, Liquid crystal dispersion series on liquid crystals (World Scientific, Singapore, 1995)

    Book  Google Scholar 

  13. S. Pandey, S.K. Gupta, D.P. Singh, T. Vimal, P.K. Tripathi, A. Srivastava, R. Manohar, Effects of polymer doping on dielectric and electro-optical parameters of nematic liquid crystal. Polym. Eng. Sci. 55, 414 (2015)

    Article  Google Scholar 

  14. S. Kaur, A.K. Thakur, S.S. Bawa, A.M. Biradar, Phys. B 344, 133–139 (2004)

    Article  ADS  Google Scholar 

  15. S.S. Parab, M.K. Malik, P.G. Bhatia, R.R. Deshmukh, J. Mol. Liq. 199, 287–293 (2014)

    Article  Google Scholar 

  16. R.R. Deshmukh, A.K. Jain, Liq. Cryst. 41, 960–975 (2014)

    Article  Google Scholar 

  17. M.B. Pandey, R. Dhar, K. Agrawal, R.P. Khare, R. Dabrowski, Phase Transit. 76, 945–958 (2003)

    Article  Google Scholar 

  18. P.K. Tripathi, A.K. Misra, S. Manohar, S.K. Gupta, R. Manohar, Improved dielectric and electro-optical parameters of ZnO nano-particle (8 % Cu2+) doped nematic liquid crystal. J. Mol. Struct. 1035, 371–377 (2013)

    Article  ADS  Google Scholar 

  19. L.M. Blinov, V.G. Chigrinov, Electro-Optical Effects in Liquid Crystal Materials, vol. 3 (Springer, NewYork, 1994)

    Book  Google Scholar 

  20. P. Archer, I. Dierking, M.A. Osipov, Landau model for polymer-stabilized ferroelectric liquid crystals: experiment and theory. Phys. Rev. E 78, 051703 (2008)

    Article  ADS  Google Scholar 

  21. S.T. Wu, Design of a liquid crystal based tunable electro-optic filter. Appl. Opt. 28, 48 (1989)

    Article  ADS  Google Scholar 

  22. N. Koide, The Liquid Crystal Display Story (Springer, Tokyo, 2014). doi:10.1007/978-4-431-5489-1

    Book  Google Scholar 

Download references

Acknowledgments

P.K. Tripathi is thankful to UGC, New Delhi, for providing grant of Dr. D.S. Kothari Post-Doctoral Fellowship No. F.4-2/2006 (BSR)/PH/13-14/0080. We are grateful to DST, New Delhi, for the financial support. We are extremely grateful to both the referees for very useful comments/suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Kumar Tripathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pande, M., Tripathi, P.K., Misra, A.K. et al. Dielectric and electro-optical properties of polymer-stabilized liquid crystal system. Appl. Phys. A 122, 217 (2016). https://doi.org/10.1007/s00339-016-9749-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9749-8

Keywords

Navigation