Skip to main content
Log in

The role of nucleoside phosphorylases in the degradation of deoxyribonucleosides by thymine-requiring mutants of E. coli

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Thymine requiring strains of Escherichia coli are known to possess a significant pool of deoxyribose-1-phosphate in contrast to non-mutant strains. In this paper thymine-requiring mutants lacking thymidine phosphorylase, purine nucleoside phosphorylase, and uridine phosphorylase, in various combinations, are used to show that deoxyribose-1-phosphate is a degradation product of pyrimidine deoxynucleosides and that both thymidine phosphorylase and uridine phosphorylase participate in this degradation. Our results confirm an earlier report by Krenitsky, Barclay and Jacquez that uridine phosphorylase has some specificity for deoxyuridine. We also show that this enzyme can degrade bromodeoxyuridine. The data presented here support the hypothesis that breakdown of deoxynucleosides to deoxyribose-1-phosphate is due to an accumulation of the deoxynucleotide precursors of thymidine triphosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, S. I., Pritchard, R. H.: A map of four genes specifying enzymes involved in catabolism of nucleosides and deoxynucleosides in Escherichia coli. Molec. Gen. Genetics 104, 351–359 (1969).

    Google Scholar 

  • Barth, P. T.: Genetic and biochemical studies on the control of DNA replication in bacteria. Ph. D. Thesis (Leicester) (1968).

  • —, Beacham, I. R., Ahmad, S. I., Pritchard, R. H.: The inducer of the deoxynucleoside phosphorylases and deoxyriboaldolase in Escherichia coli. Biochim. biophys. Acta (Amst.) 161, 554–557 (1968).

    Google Scholar 

  • Beacham, I. R.: A new assay for phosphodeoxyribomutase: surface localisation of the enzyme. Biochim. biophys. Acta (Amst.) 191, 158–161 (1969).

    Google Scholar 

  • —, Barth, P. T., Pritchard, R. H.: Constitutivity of thymidine phosphorylase in deosyriboaldolase negative strains: dependence on thymine requirement and concentration. Biochim. biophys. Acta (Amst.) 166, 589–592 (1968).

    Google Scholar 

  • Beacham, I. R. Beacham, K., Zaritsky, A., Pritchard, R. H.: Intracellular thymidine triphosphate concentrations in wild-type and thymine requiring mutants of Escherichia coli 15 and K12. In preparation (1970).

  • Breitman, T. R., Bradford, R. M.: The induction of thymidine phosphorylase and excretion of deoxyribose during thymine starvation. Biochem. biophys. Res. Commun. 17, 786–791 (1964).

    Google Scholar 

  • ——: The absence of deoxyriboaldolase activity in a thymineless mutant of Escherichia coli strain 15: A possible explanation for the low thymine requirement of some bacterial strains. Biochim. biophys. Acta (Amst.) 138, 217–220 (1967).

    Google Scholar 

  • ——: Inability of low thymine requiring mutants of Escherichia coli lacking phosphodeoxyribomutase to be induced for deoxythymidine phosphorylase and deoxyriboaldolase. J. Bact. 95, 2434–2435 (1967).

    Google Scholar 

  • Burton, K.: A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of desoxyribonucleic acid. Biochem. J. 62, 315–323 (1956).

    Google Scholar 

  • Crawford, L. V.: Thymine metabolism in strains of Escherichia coli. Biochim. biophys. Acta (Amst.) 30, 428–429 (1958).

    Google Scholar 

  • Dilworth-Cannon, Jr., Breitman, T. R.: Control of deoxynucleotide biosynthesis in Escherichia coli I. Decrease of pyrimidine deoxynucleotide biosynthesis in vivo in the presence of deoxythymidylate. Biochemistry 6, 810–816 (1967a).

    Google Scholar 

  • ——: Control of deoxynucleotide biosynthesis in Escherichia coli II. Effect of deoxythymidylate on the biosynthesis of both deoxynucleotides and ribonucleotide reductase. Arch. Biochem. 127, 534–542 (1967b).

    Google Scholar 

  • Fangman, W. F.: Specificity and efficiency of thymidine incorporation in Escherichia coli lacking thymidine phosphorylase. J. Bact. 99, 681–687 (1969).

    Google Scholar 

  • Forster, E., Holldorf, A. W.: Abstracts 2nd FEBS Meeting (Vienna) p. 146 (1965).

  • Gardner, R., Kornberg, A.: Biochemical studies of bacterial sporulation and germination. V. purine nucleoside phosphorylase of vegetative cells and spore of Bacillus cereus. J. biol. Chem. 242, 2383–2388 (1967).

    Google Scholar 

  • Harrison, A. P., Jr.: Thymine incorporation and metabolism by various classes of thymineless bacteria. J. gen. Microbiol. 41, 321–333 (1965).

    Google Scholar 

  • Hotchkiss, R. D.: The quantitative separation of purines, pyrimidines and nucleosides by paper chromatography. J. biol. Chem. 175, 315–332 (1948).

    Google Scholar 

  • Imada, A., Igarasi, S.: Ribosyl and deoxyribosyl transfer by bacterial systems. J. Bact. 94, 1551–1559 (1967).

    Google Scholar 

  • Kalckar, H. M.: Differential spectrophotometry of purine compounds by means of specific enzymes I. Determination of hydroxypurine compounds. J. biol. Chem. 167, 429–443 (1947).

    Google Scholar 

  • Kammen, H. O., Strand, M.: Thymine metabolism in Escherichia coli. II. Altered uptake of thymine after bacteriophage infection. J. biol. Chem. 242, 1854–1863 (1967).

    Google Scholar 

  • Karlstrom, O., Larsson, A.: Significance of ribonucleotide reduction in the biosynthesis of deoxyribonucleotides in Escherichia coli. Europ. J. Biochem. 3, 164–170 (1967).

    Google Scholar 

  • Krenitsky, T. A., Barclay, M., Jacquez, J. A.: Specificity of mouse uridine phosphorylase. J. biol. Chem. 239, 805–812 (1964).

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951).

    Google Scholar 

  • Munch-Petersen, A.: Thymineless mutants of Escherichia coli with deficiencies in deoxyribomutase and deoxyriboaldolase. Biochim. biophys. Acta (Amst.) 161, 279–282 (1968).

    Google Scholar 

  • —: Deoxyribonucleoside catabolism and thymine incorporation in mutants of Escherichia coli lacking deoxyriboaldolase. Europ. J. Biochem. 15, 191–202 (1970).

    Google Scholar 

  • Neuhard, J.: Studies on the acid-soluble nucleotide pool in thymine-requiring mutants of Escherichia coli during thymine starvation. III. On the regulation of the deoxyadenosine triphosphate and deoxycytidine triphosphate pools of Escherichia coli. Biochim. biophys. Acta (Amst.) 129, 104–115 (1966).

    Google Scholar 

  • —: Pyrimidine nucleotide metabolism and pathways of thymidine triphosphate biosynthesis in Salmonella typhimurium. J. Bact. 96, 1519–1527 (1968).

    Google Scholar 

  • O'Donovan, G. A., Neuhard, J.: Pyrimidine metabolism in microorganisms. Bact. Rev. 34, 278–343 (1970).

    Google Scholar 

  • Paege, L. M., Schlenk, F.: Bacterial uracil riboside phosphorylase. Arch. Biochem. 40, 42–49 (1952).

    Google Scholar 

  • Pritchard, R. H., Ahmad, S. I.: Fluorouracil and the isolation of mutants lacking uridine phosphorylase in Escherichia coli: location of the gene. Molec. Gen. Genetics. In press (1971).

  • —: Induction of replication by thymidine starvation at the chromosome origin in Escherichia coli. J. molec. Biol. 9, 288–307 (1964).

    Google Scholar 

  • Rachmeler, M., Gerhart, J., Rosner, J.: Limited thymidine uptake in Escherichia coli due to an inducible thymidine phosphorylase. Biochim. biophys. Acta (Amst.) 49, 222–225 (1961).

    Google Scholar 

  • Razzell, W. E., Khorana, H. G.: Purification and properties of a pyrimidine deoxyriboside phosphorylase from Escherichia coli. Biochim. biophys. Acta (Amst.) 28, 562–566 (1958).

    Google Scholar 

  • Smith, D. H., Davis, B. D.: Mode of action of novobiocin in Escherichia coli. J. Bact. 93, 71–79 (1967).

    Google Scholar 

  • Stacey, K. A., Simson, E.: Improved method for the isolating of thymine requiring mutants of Escherichia coli. J. Bact. 90, 534–555 (1965).

    Google Scholar 

  • Taylor, A. L.: Current linkage map of Escherichia coli. Bact. Rev. 34, 155–175 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P. Starlinger

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beacham, I.R., Pritchard, R.H. The role of nucleoside phosphorylases in the degradation of deoxyribonucleosides by thymine-requiring mutants of E. coli . Molec. Gen. Genet. 110, 289–298 (1971). https://doi.org/10.1007/BF00438271

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00438271

Keywords

Navigation