Skip to main content
Log in

Suppressor specificity in Aspergillus nidulans

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Seven allele specific gene unspecific suppressors mapping at four loci have been described previously (Roberts et al. 1979). Three new suppressors mapping in suaA are characterised, and the spectrum of suppression of all the suppressors with respect to seventeen suppressible mutations in eight different genes is described. Two distinct classes of suppressor are defined. The diversity of suppression of five suaA alleles, and the temperature sensitivity of some suaA suppressor mutant combinations but not others, suggests that suppressors at this locus are acting via ribosomal protein alteration. suaC109, a mutation that results in cold-sensitivity for growth shows a similar broad spectrum of suppression. Suppressors at the suaA and suaC loci suppress mutations that have the properties of chain termination mutations as well as missense mutations.

suaB111, and suaD103 and suaD108 have a very restricted range of suppression. These suppressors may be mutations in tRNA genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al Taho NM, Sealy-Lewis HM, Scazzocchio C (1984) Curr Genet 8:245–251

    Google Scholar 

  • Arst HN Jr, Cove DJ (1973) Mol Gen Genet 126:111–141

    Google Scholar 

  • Arst HN Jr (1983) In: Maclean N, Gregory SP, Flavell RA (eds) Eukaryotic genes: Their structure, activity and regulation. Butterworth, pp 433–450

  • Bal J, Katjaniak EM, Pienizek NJ (1977) Mutat Res 56:153–156

    Google Scholar 

  • Chattoo BB, Palmer E, Ono B, Sherman F (1979) Genetics 93:67–79

    Google Scholar 

  • Clutterbuck AJ (1974) In: King RC (ed) Handbook of Genetics. Plenum, New York

    Google Scholar 

  • Clutterbuck AJ (1982) In: O'Brien SJ (ed) Genetic maps. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Coppin-Raynal E (1977) J Bacteriol 131:876–883

    Google Scholar 

  • Coppin-Raynal E (1981) Biochem Genet 19:729–740

    Google Scholar 

  • Core DJ (1966) Biochim Biophys Acta 113:51–56

    Google Scholar 

  • Dequard-Chablat M, Coppin-Raynal E (1984) Mol Gen Genet 195:294–299

    Google Scholar 

  • Gerlach WL (1975) Mol Gen Genet 138:53–63

    Google Scholar 

  • Gorini L (1970) Annu Rev Genet 1:107–134

    Google Scholar 

  • Guthrie C, Nashimoto H, Nomura M (1969) Proc Natl Acid Sci USA 63:389–391

    Google Scholar 

  • Hawthorne DC, Leupold U (1974) Curr Top Microbiol Immunol 64:1–47

    Google Scholar 

  • Hynes MJ (1978a) Mol Gen Genet 161:59–65

    Google Scholar 

  • Hynes MJ (1978b) Mol Gen Genet 166:31–36

    Google Scholar 

  • Hynes MJ (1982) Genetics 102:139–147

    Google Scholar 

  • Hynes MJ, Corrick CM, King JA (1983) Mol Cell Biol 3:1430–1439

    Google Scholar 

  • Inge-Vechtomov SG, Adrianova VM (1970) Genetika 6:103–115

    Google Scholar 

  • Ishiguro J, Ono B, Masurkar M, McLaughlin CS, Sherman F (1981) J Mol Biol 147:391–397

    Google Scholar 

  • Kohli Y, Altruda F, Kwong T, Rafalski A, Wetzel R, Soll D, Wahl G, Leupold U (1980) In: Soll D, Abelson JN, Schimmel PR (eds) Cold Spring Harbor Monograph Series, vol 9B: Transfer RNA, pp 407–419

  • Lockington RA, Sealy-Lewis HM, Scazzocchio C, Davies RW (1985) Gene 33:137–150

    Google Scholar 

  • Martinelli SD (1984) J Gen Microbiol 130:575–582

    Google Scholar 

  • Martinelli SD, Roberts T, Sealy-Lewis HM, Scazzocchio C (1984) Genet Res Camb 43:241–248

    Google Scholar 

  • McCully KS, Forbes E (1965) Genet Res 6:352–359

    Google Scholar 

  • Palmer E, Wilhelm JM, Sherman F (1979) Nature 227:148–149

    Google Scholar 

  • Pateman JA, Doy CH, Olsen JE, Norris U, Creaser EH, Hynes M (1983) Proc R Soc Lond [Biol] 217:243–264

    Google Scholar 

  • Piepersberg W, Geyl D, Hummel H, Böck A (1980) In: Osawa S, Ozeki H, Uchida H, Yura T (eds) Evolution of transcriptional and translational apparatus. University of Tokyo Press, Tokyo, pp 359–379

    Google Scholar 

  • Piper PW (1980) In: Soll D, Abelson JN, Schimmel PR (eds) Cold Spring Harbor Laboratory Monograph Series, vol 9B: Transfer RNA, pp 379–394

  • Pontecorvo G, Roper JA, Hemmons LM, MacDonald KD, Bufton AWJ (1953) Adv Genet 5:141–238

    Google Scholar 

  • Roberts T, Martinelli SD, Scazzocchio C (1979) Mol Gen Genet 177:57–64

    Google Scholar 

  • Rosset R, Gorini L (1969) J Mol Biol 39:95–112

    Google Scholar 

  • Sealy-Lewis HM, Lockington RA (1984) Curr Genet 8:253–259

    Google Scholar 

  • Sharma KK, Arst HN Jr (1985) Curr Genet 9:299–309

    Google Scholar 

  • Sherman F (1982) In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 463–486

    Google Scholar 

  • Singh A, Ursic D, Davies J (1979) Nature 277:147–148

    Google Scholar 

  • Surguchov AP, Berestetskaya YN, Fominykch ES, Pospelova EM, Smirnov YN, Teravenesyan MD, Inge-Vechtomov SG (1980) FEBS Lett 111:175–178

    Google Scholar 

  • Waldron C, Roberts CF (1974a) Mol Gen Genet 134:99–113

    Google Scholar 

  • Waldron C, Roberts CF (1974b) Mol Gen Genet 134:115–132

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sealy-Lewis, H.M. Suppressor specificity in Aspergillus nidulans . Curr Genet 12, 141–148 (1987). https://doi.org/10.1007/BF00434669

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00434669

Key words

Navigation