Skip to main content
Log in

Studies on the metabolic role of peptidyl-tRNA hydrolase

I. Properties of a mutant E. coli with temperature-sensitive peptidyl-tRNA hydrolase

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

A mutant strain of Eschrichia coli that is temperature-sensitive for growth stopped protein biosynthesis at 43° C after a brief lag (Fig. 1). Cell-free extracts from the strain showed no specific defect in aminoacyl-tRNA synthetases, binding initiator tRNA to ribosomes (Table 1), protein chain elongation (Tables 2, 5) or protein chain termination (Tables 3, 4) at high temperature.

The partially purified enzyme peptidyl-tRNA hydrolase, however, was temperature-sensitive (Table 6); the mutant hydrolase was inactivated rapidly at 43° C (Table 7). Mixing experiments ruled out the presence, in the mutant enzyme preparation, of an inhibitor and also demonstrated, on the mutant enzyme, a protective effect by wild type enzyme that was not shown by general coli proteins (Tables 8, 9).

Interrupted mating allowed the temperature-sensitive growth phenotype to be mapped near to and before trp (Figs. 4, 5). Co-transsduction, mediated by bacteriophage P1, with trp + (frequency 7.5%) located the marker at 24 min on the coli map. All transductants for temperature-sensitive growth also had temperature-sensitive peptidyl-tRNA hydrolase activity in crude sonicates (Table 10). We provisionally conclude that the temperature-sensitive protein synthesis and growth are caused by a single genetic change in the structural gene (pth) for peptidyl-tRNA hydrolase.

After shift to 43° C the polysomes of the mutant cells broke down into 70S particles (Figs. 2, 3). A defect in protein biosynthesis thus appeared to be located after termination and before reformation of new polysomes.

The metabolic role of peptidyl-tRNA hydrolase is discussed in the light of these experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atherly, A. G., Menninger, J. R.: Mutant Escherichia coli strain with temperature sensitive peptidyl-transfer RNA hydrolase. Nature (Lond.) New Biol. 240, 245–246 (1972).

    Google Scholar 

  • Atherly, A. G., Suchanek, M. C.: Characterization of mutants of Escherichia coli temperaturesensitive for ribonucleic acid regulation: An unusual phenotype associated with a phenyalanyl transfer ribonucleic acid synthetase mutant. J. Bact. 108, 627–638 (1971).

    Google Scholar 

  • Bretscher, M.: Asymmetrical lipid bilayer structure for biological membranes. Nature (Lond.) New Biol. 236, 11–12 (1972).

    Google Scholar 

  • Betscher, M., Goodman, H., Menninger, J., Smith, J.: Polypeptide chain termination using synthetic polynucleotides. J. molec. Biol. 14, 634–639 (1965).

    Google Scholar 

  • Capecchi, M. R.: A rapid assay for polypeptide chain termination. Biochem. biophys. Res. Commun. 28, 773–778 (1967).

    Google Scholar 

  • Chapeville, F., Yot, P., Paulin, D.: Enzymatic hydrolysis of N-acyl-aminoacyl tRNAs. Cold Spr. Harb. Symp. quant. Biol. 34, 493–498 (1969).

    Google Scholar 

  • Cuzin, F., Kretchmer, N., Greenberg, R. E., Hurwitz, R., Chapeville, F.: Enzymatic hydrolysis of N-substituted aminoacyl-tRNA. Proc. nat. Acad. Sci. (Wash.) 58, 2079–2086 (1967).

    Google Scholar 

  • Davis, J. E., Sinsheimer, R. L.: The replication of bacteriophage MS2 1. Transfer of parental nucleic acid to progeny phage. J. molec. Biol. 6, 203–207 (1963).

    Google Scholar 

  • Flessel, C. P., Ralph, P., Rich, A.: Polyribosomes of growing bacteria. Science 158, 658–660 (1967).

    Google Scholar 

  • Guerola, N., Ingraham, J. L., Cerdá-Olmedo, E.: Induction of closely linked multiple mutations by nitrosoguanidine. Nature (Lond.) New Biol. 230, 122–125 (1971).

    Google Scholar 

  • Gurgo, C., Craig, E., Schlessinger, D., Afolayan, A.: Polyribosome metabolism in Escherichia coli starved for an amino acid. J. molec. Biol. 62, 525–535 (1971).

    Google Scholar 

  • Kaplan, S.: Correlation between the rate of ribonucleic acid synthesis and the level of valyl transfer ribonucleic acid in mutants of Escherichia coli. J. Bact. 98, 579–586 (1969).

    Google Scholar 

  • Kössel, H.: Purification and properties of peptidyl-tRNA hydrolase from Escherichia coli. Biochim. biophys. Acta (Amst.) 204, 191–202 (1970).

    Google Scholar 

  • Kössel, H., RajBhandary, U. L.: Studies on polynucleotides: LXXVI. Enzymic hydrolysis of N-acyl-aminoacyl-transfer RNA. J. molec. Biol. 35, 539–560 (1968).

    Google Scholar 

  • Lapidot, Y., de Groot, N.: The chemical synthesis and the biochemical properties of peptidyl-tRNA. Progress in nucleic acid research and molecular biology, vol. 12, p. 189–228, eds. Davidson, J. N., and Cohn, W. E.: New York: Academic Press 1972.

    Google Scholar 

  • Matthaei, J. H., Nirenberg, M. W.: Characteristics and stabilization of DNAase-sensitive protein synthesis in Escherichia coli extracts. Proc. nat. Acad. Sci. (Wash.) 47, 1580–1588 (1961).

    Google Scholar 

  • Menninger, J. R.: A simple assay for protein chain termination using natural peptidyl-tRNA. Biochim. biophys. Acta (Amst.) 240, 237–243 (1971).

    Google Scholar 

  • Menninger, J. R., Mulholland, M. C., Stirewalt, W. S.: Peptidyl-tRNA hydrolase and protein chain termination. Biochim. biophys. Acta (Amst.) 217, 496–511 (1970).

    Google Scholar 

  • Menninger, J. R., Walker, C.: An assay for protein chain termination using peptidyl-tRNA. In: Methods in enzymology, nucleic acids and protein synthesis, vol. XX, part E (1973) (in the press).

  • Pestka, S.: Inhibitors of ribosome functions. Ann. Rev. Microbiol. 25, 487–462 (1971).

    Google Scholar 

  • Phillips, S. L., Schlessinger, D., Apirion, D.: Mutants in Escherichia coli ribosomes: A new selection. Proc. nat. Acad. Sci. (Wash.) 62, 772–777 (1969)

    Google Scholar 

  • Sabol, S., Antonia, M., Sillero, G., Iwasaki, K., Ochoa, S.: Purification and properties of initiation factor F3. Nature (Lond.) 228, 1269–1273 (1970).

    Google Scholar 

  • Schlessinger, D.: Ribosomes: Development of some current ideas. Bact. Rev. 33, 445–453 (1969).

    Google Scholar 

  • Siegelman, F., Apirion, D.: Aurintricarboxylic acid, a preferential inhibitor of initiation of protein synthesis. J. Bact. 105, 902–907 (1971).

    Google Scholar 

  • Stanley, Jr., W. M., Bock, R. M.: Isolation and physical properties of the ribosomal ribonucleic acid of Escherichia coli. Biochemistry 4, 1302–1311 (1965).

    Google Scholar 

  • Subramanian, A. R., Davis, B. D.: Activity of initiation factor F3 in dissociating Escherichia coli ribosomes. Nature (Lond.) 228, 1273–1275 (1970).

    Google Scholar 

  • Taylor, A. L.: Current linkage map of Escherichia coli. Bact. Rev. 34, 155–175 (1970).

    Google Scholar 

  • Taylor, A. L., Trotter, C. D.: Revised linkage map of Escherichia coli Bact. Rev. 31, 332–353 (1967).

    Google Scholar 

  • Vogel, Z., Zamir, A., Elson, D.: On the specificity and stability of an enzyme that hydrolyzes N-substituted aminoacyl-transfer RNA's. Proc. nat. Acad. Sci. (Wash.) 61, 701–707 (1968).

    Google Scholar 

  • Webster, R. E., Engelhardt, D. L., Zinder, N. D.: Amber mutants and chain termination in vitro. J. molec. Biol. 29, 27–43 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. Nomura

Journal paper No. J-7465 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa, project no. 1747.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menninger, J.R., Walker, C., Tan, P.F. et al. Studies on the metabolic role of peptidyl-tRNA hydrolase. Molec. Gen. Genet. 121, 307–324 (1973). https://doi.org/10.1007/BF00433230

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00433230

Keywords

Navigation