Skip to main content
Log in

Decrease in brain NE turnover after chronic DMI treatment; no effect with iprindole

  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Previous studies have suggested that chronic treatment with tricyclic antidepressants alters brain NE turnover. This action is more likely a biochemical correlate of their clinical effect than is the blockade of amine reuptake, because the latter occurs with acute administration, whereas tricyclics must be given chronically for clinical improvement. In this paper the effects of chronic treatment with the tricyclics desmethylimipramine (DMI) and iprindole (a clinically effective tricyclic that does not potently block amine reuptake) on rat brain NE turnover, as measured by the Conversion Index, was studied. Chronic DMI, but not iprindole, decreased NE turnover. These results are discussed regarding the proposed mechanism of action of tricyclics and the ‘catecholamine hypothesis of affective disorders’. Chronic DMI also tended to decrease endogenous brain NE, and chronic treatment with either DMI or iprindole tended to decrease brain and plasma tyrosine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aghajanian, G. K., Bunney, B. S., Kuhar, M. J.: Use of single unit recording in correlating transmitter turnover with impulse flow in monoamine neurons. In: New concepts in neurotransmitter regulation, A. J. Mandell, ed., pp. 115–134. New York: Plenum Press 1973

    Google Scholar 

  • Alpers, H. S., Himwich, H. E.: The effects of chronic imipramine administration on rat brain levels of serotonin, 5-hydroxy-indoleacetic acid, norepinephrine and dopamine. J. Pharmacol. Exp. Ther. 180, 531–538 (1972)

    Google Scholar 

  • Bunney, W. E., Jr., Davis, J. M.: Norepinephrine in depressive reactions. Arch. Gen. Psychiatry 13, 438–494 (1965)

    Google Scholar 

  • Carlsson, A., Davis, J. N., Kehr, W., Lindqvist, M., Atack, C. V.: Simultaneous measurement of tyrosine and tryptophan hydroxylase activities in brain in vivo using an inhibitor of the aromatic amino acid decarboxylase. Naunyn-Schmiedebergs Arch. Pharmacol. 275, 153–168 (1972)

    Google Scholar 

  • Carlsson, A., Fuxe, K., Hamberger, B., Lindqvist, M.: Biochemical and histochemical studies of the effects of imipramine-like drugs and (+)amphetamine on central and peripheral catecholamine neurons. Acta Physiol. Scand. 67, 481–497 (1966)

    Google Scholar 

  • Chang, C. C.: A sensitive method for spectrophotofluorometric assay of catecholamines. Int. J. Neuropharmacol. 3, 643–649 (1964)

    Google Scholar 

  • Costa, E.: Simple neuronal models to estimate turnover rate of noradrenergic transmitters in vivo. In: Biochemistry of simple neuronal models, E. Costa and E. Giacobini, eds., pp. 169–204. Adv. Biochem. Psychopharmacol. 2. New York: Raven Press 1970

    Google Scholar 

  • Costa, E.: Methods for measuring indolealkylamine and catecholamine turnover rate “in vivo”. Adv. Exp. Med. Biol. 13, 157–174 (1971)

    Google Scholar 

  • Costa, E., Neff, N. H.: Principle of steady-state kinetics as applied to the evaluation of drug effects on adrenergic neurons. In: Importance of fundamental principles in drug evaluation. D. H. Tedeschi and R. E. Tedeschi, eds., pp. 185–202. New York: Raven Press 1968

    Google Scholar 

  • Costa, E., Neff, N. H.: Estimation of turnover rates to study the metabolic regulation of the steady-state level of neuronal monoamines. In: Handbook of neurochemistry, vol. IV, A. Lajtha, ed., pp. 45–90. New York: Plenum Press 1970

    Google Scholar 

  • Daneman, E. A.: Treatment of depressed patients with iprindole. Psychosomatics 8, 216–221 (1967)

    Google Scholar 

  • El Deiry, N. K.: Controlled trial of WY-3263: an evaluation of nondrug factors. In: Proceedings of the fourth world congress of psychiatry, part 4, p. 3159, International Congress Series No. 150. Amsterdam: Excerpta Medica Foundation 1967

    Google Scholar 

  • Fann, W. E., Davis, J. M., Janowsky, D. S., Kaufmann, J. S., Griffith, J. D., Oates, J. A.: Effect of iprindole on amine uptake in man. Arch. Gen. Psychiatry 26, 158–162 (1972)

    Google Scholar 

  • Freeman, J. J., Sulser, F.: Iprindole-amphetamine interactions in the rat: the role of aromatic hydroxylation of amphetamine in its mode of action. J. Pharmacol. Exp. Ther. 183, 307–315 (1972)

    Google Scholar 

  • Fuxe, K., Ungerstedt, U.: Histochemical studies on the effect of (+)amphetamine, drugs of the imipramine group and tryptamine on central catecholamine and 5-hydroxytryptamine neurons after intraventricular injection of catecholamines and 5-hydroxytryptamine. Eur. J. Pharmacol. 4, 135–144 (1968a)

    Google Scholar 

  • Fuxe, K., Ungerstedt, U.: The effect of imipramine on central 5-hydroxytryptamine neurons. J. Pharm. Pharmacol. 20, 150–151 (1968b)

    Google Scholar 

  • Glowinski, J., Axelrod, J.: Inhibition of uptake of tritiated noradrenaline in the intact rat brain by imipramine and structurally related compounds. Nature (Lond.) 204, 1318 (1964)

    Google Scholar 

  • Glowinski, J., Axelrod, J.: Effects of drugs on the disposition of H3-norepinephrine in the rat brain. Pharmacol. Rev. 18, 775–785 (1966)

    Google Scholar 

  • Glowinski, J., Axelrod, J., Iversen, L. L.: Regional studies of catecholamines in the rat brain. IV. Effects of drugs on the disposition and metabolism of H3-norepinephrine and H3-dopamine. J. Pharmacol. Exp. Ther. 153, 30–41 (1966)

    Google Scholar 

  • Gluckman, M. I., Baum, T.: The pharmacology of iprindole, a new antidepressant. Psychopharmacologia (Berl.) 15, 169–185 (1969)

    Google Scholar 

  • Hicks, J. T.: Iprindole, a new antidepressant for use in general office practice. Illinois Med. J. 128, 622–626 (1965)

    Google Scholar 

  • Imlah, N. W., Murphy, K. P., Mellor, C. S.: The treatment of depression: a controlled comparison between iprindole (Prondol) and imipramine. Clin. Trials J. 5, 927–931 (1968)

    Google Scholar 

  • Johnson, J., Maden, J. G.: The treatment of depressions: further evaluation of iprindole. Clin. Trials J. 7, 341–344 (1970)

    Google Scholar 

  • Kopin, I. J., Breese, G. R., Krauss, K. R., Weise, V. K.: Selective release of newly synthesized norepinephrine from the cat spleen during sympathetic nerve stimulation. J. Pharmacol. Exp. Ther. 161, 271–278 (1968)

    Google Scholar 

  • Lahti, R. A., Maickel, R. P.: The tricyclic antidepressants-inhibition of norepinephrine uptake as related to potentiation of norepinephrine and clinical efficacy. Biochem. Pharmacol. 20, 482–486 (1971)

    Google Scholar 

  • Lapin, I. P., Oxenkrug, G. F.: Intensification of the central serotonergic processes as a possible determinant of the thymoleptic effect. Lancet 1969I, 132–136

  • Laverty, R., Taylor, K. M.: The fluorometric assay of catecholamines and related compounds: improvements and extensions to the hydroxyindole technique. Anal. Biochem. 22, 269–279 (1968)

    Google Scholar 

  • Lemberger, L., Sernatinger, E., Kuntzman, R.: Effect of desmethylimipramine, iprindole, and dl-erythro-α-(3,4-dichlorophenyl)-β-(t-butyl amino) propanol HCl on the metabolism of amphetamine. Biochem. Pharmacol. 19, 3021–3028 (1970)

    Google Scholar 

  • Leonard, B., Kafoe, W.: A comparison of the acute and chronic effects of four antidepressant drugs on the turnover of serotonin, dopamine, and noradrenaline in the rat brain. Biochem. Pharmacol. 25, 1939–1942 (1976)

    Google Scholar 

  • Levitt, M., Spector, S., Sjoerdsma, A., Udenfriend, S.: Elucidation of the rate-limiting step in norepinephrine biosynthesis in the perfused guinea pig heart. J. Pharmacol. Exp. Ther. 148, 1–8 (1965)

    Google Scholar 

  • Lidbrink, P., Jonsson, G., Fuxe, K.: The effect of imipramine-like drugs and antihistamine drugs on the uptake mechanisms in the central noradrenaline and 5-hydroxytryptamine neurons. Neuropharmacology 10, 521–536 (1971)

    Google Scholar 

  • Maas, J. W., Fawcett, J. A., Dekirmenjian, H.: Catecholamine metabolism, depressive illness and drug response. Arch. Gen. Psychiatry 26, 252–262 (1972)

    Google Scholar 

  • Maitre, L., Baumann, P., Staehelin, M.: Catecholamine turnover in the rat brain: different results obtained in different experimental onditions. Naunyn Schmiedebergs Arch. Pharmacol. 274 [Suppl.], R76 (1972)

    Google Scholar 

  • Mandell, A. J., Segal, D. S., Kuczenski, R. T., Knapp, S.: Amphetamine-induced changes in the regulation of neurotransmitter biosynthetic and receptor functions in the brain. In: Pharmacology and the future of man. Fifth Int. Congress Pharmacol., 1972, vol. 1, pp. 95–105. Basel: Karger 1973

    Google Scholar 

  • McClatchey, W. T., Moffat, J., Irvin, G. M.: A double blind study of WY-3263, imipramine and placebo. J. Ther. Clin. Res. 1, 13–15 (1967)

    Google Scholar 

  • Neff, N. H., Costa, E.: Effect of tricyclic antidepressants and chlorpromazine on brain catecholamine synthesis. In: Antidepressant drugs, S. Garattini and M. N. G. Dukes, eds., pp. 28–34, International Congress Series No. 122. Amsterdam: Excerpta Medica Foundation 1967

    Google Scholar 

  • Neff, N. H., Spano, P. F., Gropetti, A., Wang, C. T., Costa, E.: A simple procedure for calculating the synthesis rate of norepinephrine, dopamine and serotonin in rat brain. J. Pharmacol. Exp. Ther. 176, 701–710 (1971)

    Google Scholar 

  • Nybäck, H. V., Walters, J. R., Aghajanian, G. K., Roth, R. H.: Noradrenergic neurons: effects of tricyclic antidepressants on single unit activity. Pharmacologist 16, 236 (1974)

    Google Scholar 

  • Rapin, J., Jacquot, C., Guedri, H. E., Cohen, Y.: Effects of amphetamine and its hydroxylated derivatives on newly synthesized hypothalamic norepinephrine; study in vitro. Biochem. Pharmacol. 24, 428–429 (1975)

    Google Scholar 

  • Rickels, K., Chung, H., Csanalosi, I., Sablosky, W., Simon, J.: Irpindole and imipramine in nonpsychotic depressed outpatients. Br. J. Psychiatry 123, 329–339 (1973)

    Google Scholar 

  • Rickels, K., Gordon, P. E., Mecklenberg, R.: Iprindole in neurotic depressed general practice patients: a controlled study. Psychosomatics 9, 208–214 (1968)

    Google Scholar 

  • Roffler-Tarlov, S., Schildkraut, J. J., Draskoczy, P. R.: Effects of acute and chronic administration of desmethylimipramine on the content of norepinephrine and other monoamines in the rat brain. biochem. Pharmacol. 22, 2923–2926 (1973)

    Google Scholar 

  • Rosloff, B. N., Davis, J. M.: Effects of iprindole on norepinephrine turnover and transport. Psychopharmacologia (Berl.) 40, 53–64 (1974)

    Google Scholar 

  • Ross, S. B., Renyi, A. L., Ogren, S. O.: A comparison of the inhibitory activities of iprindole and imipramine on the uptake of 5-hydroxytryptamine and noradrenaline in brain slices. Life Sci. 10, 1267–1277 (1971)

    Google Scholar 

  • Schanberg, S. M., Schildkraut, J. J., Kopin, I. J.: The effects of psychoactive drugs on norepinephrine-3H metabolism in brain. Biochem. Pharmacol. 16, 393–399 (1967)

    Google Scholar 

  • Schildkraut, J. J.: Biogenic amines and affective disorders. Annu. Rev. Med. 25, 333–348 (1974)

    Google Scholar 

  • Schildkraut, J. J., Draskoczy, P. R., Gershon, E. S., Reich, P., Grab, E. L.: Catecholamine metabolism in affective disorders. IV. Preliminary studies of norepinephrine metabolism in depressed patients treated with amitriptyline. J. Psychiatr. Res. 9, 173–185 (1972)

    Google Scholar 

  • Schildkraut, J. J., Gordon, E. K., Durell, J.: Catecholamine metabolism in affective disorders. I. Normetanephrine and VMA excretion in depressed patients treated with imipramine. J. Psychiatr. Res. 3, 213–228 (1965)

    Google Scholar 

  • Schildkraut, J. J., Kety, S. S.: Biogenic amines and emotion. Science 156, 21–30 (1967)

    Google Scholar 

  • Schildkraut, J. J., Winokur, A., Applegate, C. W.: Norepinephrine turnover and metabolism in rat brain after long-term administration of imipramine. Science 168, 867–869 (1970)

    Google Scholar 

  • Schildkraut, J. J., Winokur, A., Draskoczy, P. R., Hensle, J. H.: Changes in norepinephrine turnover in rat brain during chronic administration of imipramine and protriptyline: a possible explanation for the delay in onset of clinical antidepressant effects. Am. J. Psychiatry 127, 1032–1039 (1971)

    Google Scholar 

  • Schubert, J., Nybäck, H., Sedvall, G.: Effect of antidepressant drugs on accumulation and disappearance of monoamine formed in vivo from labelled precursors in mouse brain. J. Pharm. Pharmacol. 22, 136–138 (1970)

    Google Scholar 

  • Sedvall, G. C., Weise, V. K., Kopin, I. J.: The rate of norepinephrine synthesis measured in vivo during short intervals: influence of adrenergic nerve impulse activity. J. Pharmacol. Exp. Ther. 159, 274–282 (1968)

    Google Scholar 

  • Sterlin, C., Lehmann, H. E., Oliveros, R. F.: A preliminary investigation of WY-3263 versus amitriptyline in depressions. Curr. Ther. Res. 10, 576–582 (1968)

    Google Scholar 

  • Sutherland, M. S., Sutherland, S. S., Phillip, A. E.: Depressive illness: comparison of effects of pramidole (WY-3263) and imipramine. Clin. Trials J. 4, 856–860 (1967)

    Google Scholar 

  • Thierry, A. M., Blanc, G., Glowinski, J.: Effect of stress on the disposition of catecholamines localized in various intraneuronal storage forms in the brain stem of the rat. J. Neurochem. 18, 449–461 (1971)

    Google Scholar 

  • Thoenen, H., Huerlimann, A., Haefely, W.: Mode of action of imipramine and 5-(3′-methylamino-propyliden)-dibenzo(a,e)-cycloheptal (1,3,5) trien hydrochloride (R04-6011), a new antidepressant drug, on peripheral adrenergic mechanisms. J. Pharmacol. Exp. Ther. 144, 405–414 (1964)

    Google Scholar 

  • Udenfriend, S.: In: Fluorescence assay in biology and medicine, pp. 129–134. New York: Academic Press 1962

    Google Scholar 

  • Weiner, N.: Regulation of norepinephrine biosynthesis. Annu. Rev. Pharmacol. 10, 273–290 (1970)

    Google Scholar 

  • Whitby, L. G., Axelrod, J., Weil-Malherbe, H.: The fate of H3-norepinephrine in animals. J. Pharmacol. Exp. Ther. 132, 193–201 (1961)

    Google Scholar 

  • Wurtman, R. J., Larin, F., Mostofapour, S., Ferstrom, J. D.: Brain catechol synthesis: control by brain tyrosine concentration. Science 185, 183–184 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosloff, B.N., Davis, J.M. Decrease in brain NE turnover after chronic DMI treatment; no effect with iprindole. Psychopharmacology 56, 335–341 (1978). https://doi.org/10.1007/BF00432858

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00432858

Key words

Navigation