Skip to main content
Log in

Alterations in cerebrospinal fluid dopamine metabolites following physostigmine infusion

  • Original Investigations
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

The effect of IV physostigmine administration on the cerebrospinal fluid (CSF) levels of homovanillic acid (HVA) and dihydroxyphenylacetic acid (DOPAC) in normal subjects was determined. After an adjustment for differing CSF concentrations of probenecid, physostigmine was found to elevate CSF HVA and DOPAC concentrations. The authors discuss these changes in CSF HVA and DOPAC and their possible relationship to the ability of physostigmine to decrease the symptoms of some patients with tardive dyskinesia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aghajanian GK, Bunney BS (1973) Central dopaminergic neurons: neurophysiological identification and responses to drugs. In: Usdin E, Snyder S (eds) Frontiers in catecholamine research. Pergamon, New York, p 643

    Google Scholar 

  • Andén NE (1974) Effects of oxotremorine and physostigmine on the turnover of dopamine in the corpus striatum and the limbic system. J Pharm Pharmacol 26:738–740

    Google Scholar 

  • Andén NE, Badard P, Fuke K, Ungerstedt U (1972) Early and selective increase in brain dopamine levels after axotomy. Experientia 28:300–302

    Google Scholar 

  • Andén NE, Stock G (1973) Effect of clozapine on the turnover of dopamine in the corpus striatum and in the limbic system. J Pharm Pharmacol 25:346–348

    Google Scholar 

  • Arnfred T, Randrup A (1968) Cholinergic mechanisms in brain inhibiting amphetamine-induced stereotyped behavior. Acta Pharmacol Toxicol 26:384–394

    Google Scholar 

  • Barbeau A (1978) Emergency treatments: replacement therapy with choline or lecithin in neurological diseases. Can J Neurol Sci 5:157

    Google Scholar 

  • Bartholini G, Keller HH, Pletscher A (1975) Drug-induced changes of dopamine turnover in striatum and limbic system of the rat. J Pharm Pharmacol 27:439–442

    Google Scholar 

  • Berger PA, Faull KF, Davis KL, Barchas JD (1980) Monoamine metabolites in CSF in psychiatric disorders. In: Usdin E, Kopin I, Barchas J (eds) Catecholamines: basic and clinical frontiers. Pergamon Press, London (in press)

    Google Scholar 

  • Bhatnagar SP (1973) Studies related to the cholinergic influence on the accumulation and disappearance of monoamines in the rat brain. Can J Physiol Pharmacol 51:893–899

    Google Scholar 

  • Burt DR, Creese I, Snyder SH (1977) Antischizophrenic drugs: chronic treatment elevates dopamine receptor binding in brain. Science 196:326–328

    Google Scholar 

  • Carlsson A, Kehr W, Lindquist M, Magnusson T, Atack CU (1972) Catecholamine metabolism. Pharmacol Rev 24:371–384

    Google Scholar 

  • Casey DE, Denney D (1977) Pharmacological characterization of tardive dyskinesia. Psychopharmacol 54:1–8

    Google Scholar 

  • Christensen AV, Fjalland G, Moller-Nielsen I (1976) On the supersensitivity of dopamine receptors, induced by neuroleptics. Psychopharmacology 48:1–6

    Google Scholar 

  • Corrodi H, Fuxe K, Hammer W, Sjögvist F, Ungerstedt U (1967) Oxotremorine and central monoamine neurones. Life Sci 6:2557–2566

    Google Scholar 

  • Costall B, Naylor RJ, Olley JE (1972) Catalepsy and circling behavior after intracerebral injections on neuroleptic, cholinergic and anticholinergic agents into the caudate-putamen, globus pallidus, and substantia nigra of rat brain. Neuropharmacology 11:645

    Google Scholar 

  • Crossman AR, Walker RJ, Woodruff GN (1974) Proceedings: pharmacological studies on single neurons in the substantia nigra of the rat. Br J Pharmacol 51:137 P-138 P

    Google Scholar 

  • Davis KL, Berger PA, Hollister LE (1975b) Choline for tardive dyskinesia (a letter). N Engl J Med 293:152

    Google Scholar 

  • Davis KL, Hollister LE, Barchas JD, Berger PA (1976) Choline in tardive dyskinesia and Huntington's disease. Life Sci 19:1507–1516

    Google Scholar 

  • Davis KL, Hollister LE, Goodwin FK, Gordon EK (1977) Neurotransmitter metabolites in the cerebrospinal fluid of man following physostigmine. Life Sci 21:933–936

    Google Scholar 

  • Davis KL, Hollister LE, Berger PA, Barchas JD (1975a) Cholinergic imbalance hypotheses of psychoses and movement disorders: strategies for evaluation. Psychopharmacol Comm 1 (5):533–543

    Google Scholar 

  • Davis KL, Hollister LE, Tepper J (1978) cholinergic inhibition of methylphenidate-induced stereotypy: oxotremorine. Psychopharmacology 56:1–4

    Google Scholar 

  • Faull KF, Anderson PM, Barchas JD, Berger PA (1980) A selected ion monitoring assay for biogenic amine metabolites and probenecid, in human lumbar cerebrospinal fluid. J Chromatog Biomed Applic (in press)

  • Feltz P (1971) Decaminobutyric acid and a candato-nigral inhibition. Can J Physiol Pharmacol 49:1113–1115

    Google Scholar 

  • Fjalland B, Moller-Nielsen I (1974) Enhancement of methylphenidate-induced stereotypes by repeated administration of neuroleptics. Psychopharmacologia 34:105–109

    Google Scholar 

  • Gerlach J, Reisby N, Randrup A (1974) Dopaminergic hypersensitivity and cholinergic hypofunction in the pathophysiology of tardive dyskinesia. Psychopharmacologia 34:21–35

    Google Scholar 

  • Goodwin FK, Post RM, Dunner DL (1973) Cerebrospinal fluid metabolites in affective illness: the probenecid technique. Am J Psychiatry 130:73–79

    Google Scholar 

  • Granacher RP, Baldessarini RJ, Cole JV (1975) The pharmacologic evaluation of tardive dyskinesia. N Engl J Med 292:326

    Google Scholar 

  • Growdon JG, Hirsch MJ, Wurtman RJ, Wiener W (1977) Oral choline administration to patients with tardive dyskinesia. N Engl J Med 297:524–527

    Google Scholar 

  • Hall RH, Jackson RA, Swain JM (1956) Neurotoxic reactions resulting from chlorpromazine administration. JAMA 141:214–218

    Google Scholar 

  • Janowsdy DS, Yousef MK, Davis JM, Sekerke HF (1972) Cholinergic antagonism of methylphenidate-induced stereotyped behavior. Psychopharmacologia 27:295–303

    Google Scholar 

  • Javoy F, Agid Y, Bouvet D, Glowinski J (1974) Changes in neostriatal DA metabolism after carbachol or atropine microinjections into the substantia nigra. Brain Res 68:253

    Google Scholar 

  • Javoy F, Agid Y, Glowinski J (1975) Oxotremorine and atropine-induced changes of dopamine metabolism in the rat brain. J Pharm Pharmacol 27:677–681

    Google Scholar 

  • Klawans HL (1973) The pharmacology of tardive dyskinesia. Am J Psychiatry 130:82

    Google Scholar 

  • Klawans HL, Rubovits R (1972) An experimental model of tardive dyskinesia. J Neural Transm 33:235–246

    Google Scholar 

  • Klawans HL Jr, Rubovits R (1974) Effect of cholinergic and anticholinergic agents on tardive dyskinesia. J Neurol Neurosurg Psychiatry 37:941–974

    Google Scholar 

  • Laverty R, Sharman DF (1965) Modification by drugs of the metabolism of 3,4-dihydroxyphenylethylamine, noradrenaline, and 5-hydroxytryptamine in the brain. Br J Pharmacol 24:759–772

    Google Scholar 

  • McGeer PL, Fibiger HC, Hattori T, Singh VK, McGeer EG, Maler L (1974) Biochemical neuroanatomy of the basal ganglia. Adv Behav Biol 10:27–47

    Google Scholar 

  • McNair JL, Sutin J, Tsubokawa T (1971) Suppression of cell firing in the substantia nigra by caudate nucleus stimulation. Exp Neurol 37:395–411

    Google Scholar 

  • Moore KE, Thornburg JE (1975) Drug-induced dopaminergic supersensitivity. Adv Neurol 9:93–104

    Google Scholar 

  • Moller-Nielsen I, Fjalland B, Pedersen V, Nymard M (1974) Pharmacology of neuroleptics upon repeated administration. Psychopharmacologia 34:95–104

    Google Scholar 

  • Murrin LC, Roth RH (1976) Dopaminergic neurons: reversal and effects elicited by gamma butyrolactone by stimulation of the nigro-neostriatal pathway. Naunyn-Schmiedeberg's Arch Pharmacol 295:15–20

    Google Scholar 

  • Nauta WJH, Mehler W (1966) Projections of the linetiform nucleus in the monkey. Brain Res 1:3–42

    Google Scholar 

  • Neff NH, Tozer RN, Brodie BB (1967) Application of steady-state kinetics to studies of the transfer of 5-HIAA from brain to plasma. J Pharmacol Exp Ther 158:214–218

    Google Scholar 

  • Niimi K, Ikeda T, Kawamura S, Inoshita H (1970) Efferent projections of the head of the caudate nucleus in the cat. Brain Res. 21:32–43

    Google Scholar 

  • Nose T, Takemoto H (1974) Effect of oxotremorine on homovanillic acid concentration in the striatum of the rat. Eur J Pharmacol 25:51–56

    Google Scholar 

  • Okada Y, Hassler P (1973) Uptake and release of aminobutyric acid (GABA) in slices of substantia nigra of rats. Brain Res. 49:214–217

    Google Scholar 

  • Papeschi R, Sourkes TL, Poririer LF, Boucher RL (1971) On the intracerebral origin of homovanillic acid of the cerebrospinal fluid of experimental animals. Brain Res 28:527–533

    Google Scholar 

  • Perez-Cruet J, Gessa GL, Tagliamonte A (1971) Evidence for a balance in the basal ganglia between cholinergic and dopaminergic activity. Fed Proc 30:216

    Google Scholar 

  • Potig PJ, Vost M (1969) Release to the cerebral ventricles of substances with possible transmitter function in the caudate nucleus. J Physiol (Lond) 204:687–715

    Google Scholar 

  • Precht W, Yoshida M (1971) Blockage of caudate-evoked inhibition of neurons in the substantia nigra by picrotoxin. Brain Res 32:229–233

    Google Scholar 

  • Roffler-Tarlov S, Sharman DF, Tegerdine P (1971) 3,4-Dihydroxyphenylacetic acid in the mouse striatum: a reflection of intra-and-extra-neuronal metabolism of dopamine. Br J Pharmacol 42:343–351

    Google Scholar 

  • Roth RH, Murrin LC, Walters JR (1976) Central dopaminergic neurons: effects of alterations in impulse flow on the accumulation of dihydroxyphenylacetic acid. Eur J Pharmacol 36:163–171

    Google Scholar 

  • Roth RH, Walters JR, Aghajanian GK (1973) Effects of impulse flow on the release and synthesis of DA in the rat striatum. In: Snyder SH, Costa E (eds) Frontiers in catecholamine research. Pergamon Press, New York, p 567

    Google Scholar 

  • Roth RH, Walters JR, Morgenroth VH (1974) Effects of alterations in impulse flow on transmitter metabolism in central dopaminergic neurons. In: Usdin E (ed) Neuropsychopharmacology of monoamines and their regulatory amines. Raven Press, New York, p 369

    Google Scholar 

  • Schelkunov EL (1967) Adrenergic effect of chronic administration of neuroleptics. Nature 24:1210–1212

    Google Scholar 

  • Smith RC, Davis JM (1975) Behavioral supersensitivity to apomorphine and amphetamine after chronic high dose haloperidol treatment. Psychopharmacol Comm 1(3):285–293

    Google Scholar 

  • Szabo J (1962) Topical distribution of the striatal efferents in the monkey. Exp Neurol 5:21–36

    Google Scholar 

  • Szabo J (1970) Projections from the body of the caudate nucleus in the rhesus monkey. Exp Neurol 27:1–15

    Google Scholar 

  • Szabo J (1972) The course and distribution of efferents from the tail of the caudate nucleus in the monkey. Exp Neurol 37:562–572

    Google Scholar 

  • Tamminga CA, Smith RC, Ericksen SE, Chang S, Davis JM (1977) Cholinergic influences in tardive dyskinesia. Am J Psychiatry 134:769–774

    Google Scholar 

  • Tarsy D (1977) Dopamine-acetylcholine interaction in the basal ganglia. In: Fields WS (ed) Neurotransmitter function. Stratton Intercontinental, New York, p 213

    Google Scholar 

  • Tarsy D, Baldessarini RJ (1973) Pharmacologically induced behavioral supersensitivity to apomorphine. Nature 245:262–263

    Google Scholar 

  • Tarsy D, Baldessarini RJ (1976) The tardive dyskinesia syndrome. In: Klawans HL (ed) Clinical neuropharmacology, vol. 1. Raven Press, New York, p 29

    Google Scholar 

  • Tarsy D, Leopold N, Sax DS (1974) Physostigmine in choreiform movement disorders. Neurology 24:28–33

    Google Scholar 

  • Uhrbrand L, Faurbye A (1960) Reversible and irreversible dyskinesia after treatment with perphenazine, chlorpromazine, reserpine and electroconvulsive therapy. Psychopharmacologia 1:408–418

    Google Scholar 

  • Ulus IH, Wurtman RJ (1976) Choline administration: activation of tyrosine hydroxylase in dopaminergic neurons of rat brain. Science 194:1060

    Google Scholar 

  • Voneida TJ (1960) An experimental study in the course and destination of fibers arising in the head of the caudate nucleus in the cat and monkey. J Comp Neurol 115:75–87

    Google Scholar 

  • Walters JR (1972) Effect of gamma hydroxybutyrate on dopamine and dopamine metabolites in the rat striatum. Biochem Pharmacol 21:2111–2121

    Google Scholar 

  • Westerink BHC, Korf J (1975) Influence of drugs on striatal and limbic homovanillic acid concentration in the rat brain. Eur J Pharmacol 33:31–40

    Google Scholar 

  • Yoshida M, Precht W (1971) Monosynaptic inhibition of neurons of the substantia nigra by caudato-nigral fibers. Brain Res 32:225–228

    Google Scholar 

  • Yoshida M, Rabin A, Anderson M (1971) Two types of monosynaptic inhibition of pallidal neurons produced by stimulation of the diencephalon and substantia nigra. Brain Res 30:235–239

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, K.L., Faull, K.F., Hollister, L.E. et al. Alterations in cerebrospinal fluid dopamine metabolites following physostigmine infusion. Psychopharmacology 72, 155–160 (1981). https://doi.org/10.1007/BF00431649

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00431649

Key words

Navigation