Skip to main content
Log in

Effects of sodium azide on phototaxis of the blue-green alga Anabaena variabilis and consequences to the two-photoreceptor systems-hypothesis

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Experiments with sodium azide support the earlier report that two different photoreceptor systems participate in the absorption of the phototactically active light in Anabaena variabilis. The one of them, represented by the phycobili-proteins and chlorophyll a, is responsible for positive and negative phototaxis around 440 nm and between 580 and 700 nm. This system is sensitive to sodium azide which is able to reverse the negative reaction at high fluence rates to a positive one. The second one which absorbs light between 500 and 560 nm and above 700 nm is insensitive to azide. It triggers only negative responses in absence and presence of azide as well. P 750 is obviously not a photoreceptor pigment of this system, since there is no indication for its occurrence in Anabaena. Even photobleaching of the photosynthetic pigments at high fluence rates is prevented by azide. The noncyclic photosynthetic electron transport is not severely inhibited by azide because photokinesis is only in part impaired. Therefore, the hypothesis is suggested that the phototactic reaction-sign reversal generator of Anabaena is controlled by the level of an active oxygen species, probably singlet oxygen, which is quenched by azide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DCMU:

3-(3,4-dichlorophenyl)-1,1-dimethylurea

References

  • Abeliovich A, Shilo M (1972a) Photooxidative death in blue-green algae. J Bacteriol 111:682–689

    Google Scholar 

  • Abeliovich A, Shilo M (1972b) Photooxidative reactions of c-Phycocyanin. Biochim Biophys Acta 283:483–491

    Google Scholar 

  • Baulina OI, Suleymanova ShS, Mineyeva LA, Gusev MV (1981) The effect of high intensity light on the ultrastructure of blue-green algal cells under the conditions of photoautotrophic cultivation. Mikrobiologia 5:769–775

    Google Scholar 

  • Carr NG, Komarek J, Whitton BA (1973) Notes on isolation and laboratory culture. In: Carr NG, Whitton BA (eds) Botanical monographs, vol 9. The biology of blue-green algae. Blackwell Scientific Publications, Oxford London Edinburgh Melbourne, pp 525–530

    Google Scholar 

  • Drews G (1957) Die phototaktischen Reaktionen einiger Cyanophyceen. Ber Dtsch Bot Ges 70:259–262

    Google Scholar 

  • Drews G (1959) Beiträge zur Kenntnis der phototaktischen Reaktionen der Cyanophyceen. Arch Protistenk 104:389–430

    Google Scholar 

  • Famintzin A (1867) Die Wirkung des Lichtes auf Algen. Jb wiss Bot 6:1–44

    Google Scholar 

  • Fischer K, Metzner H (1969) On chlorophyll and pigment 750 of Anacystis nidulans. In: Metzner P (ed) Progress in photosynthesis research, vol II. Laupp jr., Tübingen, pp 547–551

    Google Scholar 

  • Foote CS, Denny RW (1968) Chemistry of singlet oxygen. VII. Quenching by β-carotene. J Am Chem Soc 90:6233–6235

    Google Scholar 

  • Gassner EB (1962) On the pigment absorbing at 750 nm occurring in some blue-green algae. Plant Physiol 37:637–639

    Google Scholar 

  • Govindjee C, Cederstrand C, Rabinowitch E (1961) Existence of absorption bands at 730–740 and 750–760 mμ in algae of different divisions. Science 134:391–392

    Google Scholar 

  • Halliwell B (1977) The toxic action of oxygen on living organisms. In: Rehm HJ (ed) Biotechnologie. Verlag Chemie, Weinheim New York, pp 1–15

    Google Scholar 

  • Hasty N, Merkel PB, Radlick P, Kearns DR (1972) Role of azide in singlet oxygen reactions: reaction of azide with singlet oxygen. Tetrahedron Lett 1:49–52

    Google Scholar 

  • Hewitt EJ, Nicholas DJ (1963) Cations and anions: inhibitions and interactions in metabolism and in enzyme activity. In: Hochster RM, Quastel JH (eds) Metabolic inhibitors, vol II. Academic Press, New York London, pp 311–436

    Google Scholar 

  • Ito T (1978) Cellular and subcellular mechanisms of photodynamic action: the 1O2 hypothesis as a driving force in recent research. Photochem Photobiol 28:493–508

    Google Scholar 

  • Kleinen Hammans JW (1978) P 750 sensitized photooxidations in Anacystis nidulans. Plant Cell Physiol 19:1457–1463

    Google Scholar 

  • Koenig F, Vernon LP (1981) Which polypeptides are characteristic for photosystem II? Analysis of active photosystem II particles from the blue green alga Anacystis nidulans. Z Naturforsch 36c:295–304

    Google Scholar 

  • Kratz WA, Myers J (1955) Nutrition and growth of several blue-green algae. Am J Bot 42:282–287

    Google Scholar 

  • Krinski NI (1976) Cellular damage initiated by visible light. In: Gray TGR, Potage JR (eds) The survival of vegetative organisms. Society for General Microbiology Symposium, vol 26. Cambridge University Press, Cambridge, pp 209–239

    Google Scholar 

  • Krinski NI (1977) Singlet oxygen in biological systems. TIBS 2:35–38

    Google Scholar 

  • Laczkó I, Barabás K (1981) Hydrogen evolution by photobleached Anabaena cylindria. Planta 153:312–316

    Google Scholar 

  • Nultsch W (1962) Der Einfluß des Lichtes auf die Bewegung der Cyanophyceen. II. Photokinesis bei Phormidium uncinatum. Planta 57:613–623

    Google Scholar 

  • Nultsch W (1967) Untersuchungen über den Einfluß von Entkopplern auf die Bewegungsaktivität und das phototaktische Reaktionsverhalten blau-grüner Algen. Z Pflanzenphysiol 56:1–11

    Google Scholar 

  • Nultsch W, Jeeji-Bai (1966) Untersuchungen über den Einfluß von Photosynthese-Hemmstoffen auf das phototaktische und photokinetische Reaktionsverhalten blaugrüner Algen. Z Pflanzenphysiol 54:84–96

    Google Scholar 

  • Nultsch W, Hellmann W (1972) Untersuchungen zur Photokinesis von Anabaena variabilis Kützing. Arch Mikrobiol 82:76–90

    Google Scholar 

  • Nultsch W, Schuchart H, Höhl M (1979) Investigations on the phototactic orientation of Anabaena variabilis. Arch Microbiol 122:85–91

    Google Scholar 

  • Schmetterer G (1982) Formation of hydrocarbons by photobleaching Cyanobacterium, Anacystis nidulans. Z Naturforsch 37c:205–209

    Google Scholar 

  • Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171–205

    Google Scholar 

  • Stavis RL (1974a) The effect of azide on phototaxis in Chlamydomonas reinhardii. Proc Nat Acad Sci USA 71:1824–1827

    Google Scholar 

  • Stavis RL (1974b) Phototaxis in Chlamydomonas: A sensory receptor system. Thesis, New York

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. H. A. v. Stosch on the occasion of his 75. birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nultsch, W., Schuchart, H. & Koenig, F. Effects of sodium azide on phototaxis of the blue-green alga Anabaena variabilis and consequences to the two-photoreceptor systems-hypothesis. Arch. Microbiol. 134, 33–37 (1983). https://doi.org/10.1007/BF00429403

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00429403

Key words

Navigation