Skip to main content
Log in

Influence of the sanosil-induced oxidative stress on the photosynthetic apparatus of different strains of green algae and cyanobacteria

  • Original Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Photosynthetic oxygen evolution (measured by polarographic oxygen rate electrode) and pulse amplitude modulated chlorophyll fluorescence were used to assess the effect of sanosil-induced oxidative stress on photosystem II (PSII) in the green alga Chlorella vulgaris and the cyanobacterium Synechocystis salina isolated from Antarctic and mesophilic environments. This study revealed a relatively stronger influence of sanosil (especially its main component, hydrogen peroxide) on the donor site (oxygen evolving complex) compared to the acceptor side of the PSII in both green algae and cyanobacteria. The inhibition of the oxygen evolution results mainly from a decrease in the fast operating PSII centers. In addition, the obtained data showed that the effects of the oxidative stress on the cyanobacterium and the green alga strongly depend on the antenna size of PSII.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson, J. M., & Aro, E.-M. (1994). Grana stacking and protection of photosystem II in thylakoid membranes of higher plant leaves under sustained high irradiation: An hypothesis. Photosynthesis Research, 41, 315–326.

    Article  CAS  PubMed  Google Scholar 

  • Apostolova, E. L., Dobrikova, A. G., Ivanova, P. I., Petkanchin, I. B., & Taneva, S. G. (2006). Relationship between the organization of the supercomplex and the functions of the photosynthetic apparatus. Journal Photochemistry and Photobiology B: Biology, 83, 114–122.

    Article  CAS  Google Scholar 

  • Apostolova, E. L., Domonkos, I., Dobrikova, A. G., Sallai, A., Bogos, B., Wada, H., et al. (2008). Effect of phosphatidylglycerol depletion on the surface electric properties and fluorescence emission of thylakoid membranes. Journal Photochemistry and Photobiology B: Biology, 91, 51–57.

    Article  CAS  Google Scholar 

  • Apostolova, E. L., Pouneva, I. D., Grigorova, I., Minkova, K. M., Nikolaeva, N., & Rashkov, G. (2010). Differential response of the photosynthetic apparatus of Antarctic algae Synechocystis salina (Cyanophyta) and Chlorella vulgaris (Chlorophyta) to UV-B radiation. Comptes rendus de l’Académie bulgare des Sciences, 63, 1009–1016.

    CAS  Google Scholar 

  • Apostolova, E. L., Pouneva, I., Rashko, G., Dankov, K., Grigorova, I., & Misra, A. N. (2014). Effect of UV-B radiation on Photosystem II functions in Antarctic and mesophilic strains of a green alga Chlorella vulgaris and a cyanobacterium Synechocystis salina. Indian Journal of Plant Physiology, 19, 111–118.

    Article  Google Scholar 

  • Arora, A., Sairam, R. K., & Srivastara, G. C. (2002). Oxidative stress and antioxidative system in plants. Current Scienc, 82, 1227–1238.

    CAS  Google Scholar 

  • Bald, D., Kruip, J., & Roegner, M. (1996). Supramolecular architecture of cyanbacterial thylakoid membranes: How is the phicobilisome connected with the photosystems? Photosynthesis Research, 49, 103–118.

    Article  CAS  PubMed  Google Scholar 

  • Barrington, D. J., & Ghadouai, A. (2008). Application of hydrogen peroxide for the removal of toxic cyanobacteria and other phytoplankton from wastewater. Environmental Science and Technology, 42, 8916–8921.

    Article  CAS  PubMed  Google Scholar 

  • Dankov, K., Busheva, M., Stefanov, D., & Apostolova, E. L. (2009). Relationship between the degree of carotinoid depletion and function of photosynthetic apparatus. Journal Photochemistry and Photobiology B: Biology, 96, 49–56.

    Article  CAS  Google Scholar 

  • Dankov, K. G., Dobrikova, A., Ughy, B., Bogos, B., Gombos, Z., & Apostolova, E. L. (2011). LHCII organization and thylakoid lipids affect the sensitivity of the photosynthetic apparatus to high-light treatment. Plant Physiology Biochemistry, 49, 629–635.

    Article  CAS  PubMed  Google Scholar 

  • Dankov, K., Rashkov, G., Misra, A. N., Apostolova E. L. (2015). Temperature sensitivity of photosystem II in isolated thylakoid membranes from fluridone-treated pea leaves. Turkish Journal of Botany, 39, 420–428.

    Article  CAS  Google Scholar 

  • Dobrikova, A. G., Domonkos, I., Sözer, Ö., Laczkó-Dobos, H., Kis, M., Párduc, Á., et al. (2013a). Effect of partial or complete elimination of light-harvesting complexes on the surface electric properties and the functions of cyanobacterial photosynthetic membranes. Physiology Plantarum, 147, 248–260.

    Article  CAS  Google Scholar 

  • Dobrikova, A. G., Krasteva, V., & Apostolova, E. L. (2013b). Damage and protection of the photosynthetic apparatus from UV-B radiation. I. Effect of ascorbate. Journal Plant Physiology, 170, 251–257.

    Article  CAS  Google Scholar 

  • Drávkova, M., Admiral, W., & Maršálek, B. (2007). Combined exposure to hydrogen peroxide and light—Selective effects on cyanobacteria, green algae and diatoms. Environmental Science and Technology, 41, 309–314.

    Article  Google Scholar 

  • Georgiev, D., Dilov, H., & Avramova, S. (1978). Millieu nutritif tamponne et méthode de culture intensive des microalgues vertes. Hydrobiology (Bulgaria), 7, 14–23. [In Bulgarian].

    CAS  Google Scholar 

  • Ivanova, P. I., Dobrikova, A. G., Taneva, S. G., & Apostolova, E. L. (2008). Sensitivity of the photosynthetic apparatus to UV-A radiation: A role of light-harvesting complex II—Photosystem II supercomplex organization. Radiation and Environmental Biophysics, 47, 169–177.

    Article  CAS  PubMed  Google Scholar 

  • Kitajima, M., & Butler, W. (1975). Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochiica et Biophysica Acta, 376, 105–115.

    Article  CAS  Google Scholar 

  • Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids-pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350–382.

    Article  CAS  Google Scholar 

  • Lin, Z. F., Liu, N., Lin, G. Z., & Peng, C. L. (2011). Factors altering the membrane fluidity of spinach thylakoid as determined by fluorescence polarization. Acta Physiologiae Plantarum, 33, 1019–1024.

    Article  CAS  Google Scholar 

  • MacColl, R. (1998). Cyanobacterial phycobilisomes. Journal of Structural Biology, 124, 311–334.

    Article  CAS  PubMed  Google Scholar 

  • Maksimov, E. G., Kuzminov, F. I., Konyuhov, I. V., Elanskaya, I. V., & Paschenkoet, V. Z. (2011). Photosystem 2 effective fluorescence cross-section of cyanobacterium Synechocystis sp. PCC6803 and its mutants. Journal Photochemistry and Photobiology B: Biology, 104, 285–291.

    Article  CAS  Google Scholar 

  • Matthijs, H. C. P., Visser, P. M., Reeze, B., Meeuse, J., Slot, P. C., Wijn, G., et al. (2012). Selective suppression of harmful cyanobacteria in an entire lake with hydrogen peroxide. Water Research, 46, 1460–1472.

    Article  CAS  PubMed  Google Scholar 

  • Pekárková, B., Hindák, F., Šmarda, J. (1988) Morphological characteristics and physiological properties of a coccoid rhodophycean alga Rhodella grisea from thermal springs at Pieštany CzechoslovakiArchive für Protistenkund. 135, 69–83.

  • Pospíšil, P. (2009). Production of reactive oxygen species by photosystem II. Biochiica et Biophysica Acta, 1787, 1151–1160.

    Article  Google Scholar 

  • Pospíšil, P. (2012). Molecular mechanism of production and scavenging of reactive oxygen species by photosystem II. Biochiica et Biophysica Acta, 1817, 218–231.

    Article  Google Scholar 

  • Pospíšil, P. (2014). The role of metals in production and scavenging of reactive oxygen species in photosytem II. Plant and Cell Physiology, 55, 1233–1244.

    Article  Google Scholar 

  • Samuilov, V. D., Bezryadnov, D. B., Gusev, M. V., Kitashov, A. V., & Fedorenko, T. A. (2001). Hydrogen peroxide inhibits photosynthetic electron transport in cells of cyanobacterium. Biochemistry (Moscow), 66, 640–645.

    Article  CAS  Google Scholar 

  • Sandusky, P. O., & Yocum, C. F. (1988). Hydrogen peroxide oxidation catalyzed by chloride-depleted thylakoid membranes. Biochiica et Biophysica Acta, 936, 149–156.

    Article  CAS  Google Scholar 

  • Sanosil disinfectants—for better disinfection: “SANOSIL BG” Ltd [http://sanosilbg.com].

  • Setlik, I. (1967). Contamination of algal cultures by heterotrophic microorganisms and its prevention. Annual Report Algology for the Year 1966, Trebon, CSAV, Inst Microbiology (pp. 89–100).

  • Siegelman, H., & Kucia, J. (1978). Algal biliproteins. In J. Hellebuts & J. Craisie (Eds.), Handbook of phycological methods (pp. 71–79). Cambridge: Cambridge University Press.

    Google Scholar 

  • Zeinalov, Y. (2002). An equipment for investigations of photosynthetic oxygen production reactions. Bulgarian Journal of Plant Physiology., 28, 57–67.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Bulgarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilia L. Apostolova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apostolova, E.L., Rashkov, G., Dankov, K. et al. Influence of the sanosil-induced oxidative stress on the photosynthetic apparatus of different strains of green algae and cyanobacteria . Ind J Plant Physiol. 20, 333–338 (2015). https://doi.org/10.1007/s40502-015-0183-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-015-0183-2

Keywords

Navigation