Skip to main content
Log in

Influence de la température sur la cinétique, de croissance et le coefficient de maintenance de Candida lipolytica cultivé sur n-alcane

Influence of temperature on kinetics of growth and maintenance energy in n-alcane growing cultures of Candida lipolytica

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The effect of growth temperature on the evolution of kinetic parameters and yields was determined for Candida lipolytica cultures with ntetradecane as substrate, in a temperature range of 18°C to 30°C, which is below the critical growth temperature in order to work only in the activation zone of these parameters.

In such a culture limited by substrate transfer, growth rate depends on biological rates, related to microorganisms characteristics, and diffusional rates, related to mass transfer. The effect of temperature thus depends on the limiting step. The activation energy, calculated from exponential growth rate determinations is \(E_{\mu _m } = 63,600{\text{ }}J/mole\).

When the activation energy is calculated from the maximal rate of cell production (determined at the growth curve's inflexion point), it's found to be E μX=71,200 J/mole in the 18°C–24°C range, and E μX=28,000 J/mole in the 24°C–30°C range. The latter one is characteristic of a diffusion-limited process. Above 24°C, growth is controlled by substrate-transfer, as physiological potentialities are preferentially increased with temperature than diffusional ones: 24°C is thus the transition temperature T t from physiological to diffusional limitation.

The apparent yield is almost constant, over the 18°C to 30°C temperature range, although maintenance coefficients are very dependent on temperature. The activation energies related to maintenance coefficients for alkane and oxygen respectively are \(E_{m_s } = 82,500{\text{ }}J/mole\) and \(E_{mO_{\text{2}} } = 86,200{\text{ }}J/mole\).

The m s/mO 2 ratio is about 3 (g/g), whereas that, for a strict oxidation reaction of n-tetradecane ought to be 3.47 (g/g). A satisfactory correlation, relating maintenance coefficients to the maximal growth rate of yeast, is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

constante de saturation de modèle de croissance(1)

B :

vitesse spécifique considérée

C :

substrat carboné ou oxygène (g/l)

E :

energie d'activation (J/mole)

S m :

quantité de substrat consommée par maintenance au cours d'une fermentation discontinue (g)

O2 :

quantité d'oxygène transférée au milieu de culture (g/l)

R :

rendement global de la fermentation

R :

rendement global de la fermentation

Ŕ :

constante des gaz parfaits (J/mole K)

S :

concentration en substrat carboné (g/l)

T :

température de croissance (°K)

X :

concentration en biomasse (g/l)

Y :

rendement limite

m :

coefficient de maintenance (h-1)

t :

duree de fermentation (h)

θ :

tømpérature de croissance (o Celsius)

μ:

taux de croissance (h-1)

1:

relatif à la température 1.

2:

relatif à la température 2

c :

relatif au substrat carboné ou à l'oxygène

f :

relatif au temps final

i :

relatif au point d'inflexion

m :

maximum

mO2 :

relatif au coefficient de maintenance sur l'oxygène

m s :

relatif au coefficient de maintenance sur le substrat carboné

o :

relatif au temps initial

O2 :

relatif à l'oxygène

s :

relatif au substrat carboné

t :

de transition

T :

relatif à la température de croissance T

U m :

relatif au taux de croissance maximal

μX :

relatif à la productivité maximale en biomasse

Références

  • Aiba, S., Humphrey, A., Millis, S.: Biochemical engineering, 2nd ed. New York-London: Academic Press 1973

    Google Scholar 

  • Cooney, C. L., Makiguchi, H.: Temperature as an engineering parameter in SCP production. In: Continuous culture, Vol. 6. Applications and new fields (A. C. Dean, D. C. Ellwood, C. G. Evans, J. Melling, eds.), pp. 146–157. Chichester: Ellis Horwood 1976

    Google Scholar 

  • Crozier, W. J.: On biological oxidations as a function of temperature. J. Gen. Physiol. 7, 189–216 (1924)

    Google Scholar 

  • Goma, C.: Modelemathématique de croissance de Candida lipolytica sur n-paraffines. C.R. Acad. Sci., Paris 276D, 3491–3494 (1973)

    Google Scholar 

  • Goma, G., Durand, G.: Dosage de substances, non miscibles par chromatographie en phase gazeuse: Hydrocarbures dans l'eau. Water Res. 5, 545–552 (1971)

    Google Scholar 

  • Goma, G., Pareilleux, A., Durand, G.: Cinétique de dégradation des hydrocarbures par Candida lipolytica. Arch. Mikrobiol. 88, 97–109 (1972)

    Google Scholar 

  • Mainzer, S. T., Hempfling, W. P.: Effects of growth temperature on yield and maintenance during glucose-limited continuous culture of Escherichia coli. J. Bacteriol. 126, 251–256 (1976)

    Google Scholar 

  • Monod, J.: Recherche sur la croissance des cultures microbiennes. Paris: Hermann 1942

    Google Scholar 

  • Muzychenko, L., Kantere, V., Gurkin, V. A.: The influence of environmental factors on the kinetics of a biosynthetic process. In: Microbial engineering (Z. Sterbacek, ed.), pp. 339–355. London: Butterworths 1972

    Google Scholar 

  • Pirt, S. J.: Energy and carbon source requirements. In: Principles of microbe and cell cultivation, pp. 63–80. Oxford: Blackwell 1975

    Google Scholar 

  • Prokop, A., Erickson, L. E.: Growth models of cultures with two liquid phases. VII. Substrate dissolved in dispersed phase; effect of dispersed phase volume and temperature. Biotechnol. Bioeng. 14, 571–586 (1972)

    Google Scholar 

  • Senez, J.: Some considerations on the energetics of the bacterial growth. Bact. Rev. 26, 95–107 (1962)

    Google Scholar 

  • Stouthamer, A. H., Bettenhaussen, C.: Utilization of energy for growth and maintenance in continuous and batch cultures of microorganisms. Biochim. Biophys. Acta 301, 53–70 (1973)

    Google Scholar 

  • Topiwala, H., Sinclair, C. G.: Temperature relationship in continuous culture. Biotechnol. Bioeng. 13, 795–813 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moletta, R., Goma, G. & Durand, G. Influence de la température sur la cinétique, de croissance et le coefficient de maintenance de Candida lipolytica cultivé sur n-alcane. Arch. Microbiol. 118, 293–299 (1978). https://doi.org/10.1007/BF00429120

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00429120

Key words

Navigation