Skip to main content
Log in

A special morphogenetic wall defect and the subsequent activity of “murosomes” as the very reason for penicillin-induced bacteriolysis in staphylococci

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The actual reason for the penicillin-induced bacteriolysis of staphylococci was shown to be the “punching” of one or a few minute holes into the peripheral cell wall at predictable sites. These perforations were the result of the lytic activity of novel, extraplasmatic vesicular structures, located exclusively within the bacterial wall material, which we have named “murosomes”.

In untreated staphylococci the punching of holes into the peripheral wall is a normal process which follows cross wall completion and represents the first visible step of cell separation. Under penicillin, however, analogous holes are punched by the murosomes at sites of presumptive cell separation even if no sufficient cross wall material had been assembled before at this site (but had rather been deposited at other sites). Consequently, because of the internal pressure of the protoplast, lytic death is the inevitable result of this perforation of the protective peripheral wall.

Hence, the real mechanism of penicillin-induced bacteriolysis in staphylococci is considered to be mainly the result of a special morphogenetic wall defect: bacteriolysis is taking place regularly when a cell separation process is no longer preceeded by sufficient cross wall assembly at the correct place. However, hypotheses which are based purely on some variations of overall biochemical processes like total wall enzyme activities or total wall synthesis are not regarded to be sufficient to explain this type of lytic death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blumberg PM, Strominger JL (1974) Interaction of penicillin with the bacterial cell: penicillin-binding proteins and penicillin-sensitive enzymes. Bacteriol Rev 38:291–335

    Google Scholar 

  • Fontana R, Satta G, Romanzi CA (1977) Penicillins activate autolysins extracted from both Escherichia coli and Klebsiella pneumoniae envelopes. Antimicrob Agents Chemother 12: 745–747

    Google Scholar 

  • Gardner AD (1940) Morphological effects of penicillin on bacteria. Nature (Lond) 146:837–838

    Google Scholar 

  • Giesbrecht P (1984) Novel bacterial wall organelles (“murosomes”) in staphylococci: their involvement in wall assembly. In: Nombela C (ed) Microbial cell wall synthesis and autolysis. Elsevier Science Publ., Amsterdam, pp 177–186

    Google Scholar 

  • Giesbrecht P, Wecke J (1980) On the structure and function of autolytic wall systems in gram-positive bacteria. In: Brederoo P, de Priester W (eds) Electron microscopy 1980. Seventh European Congress on Electron Microscopy Foundation, Leiden, pp 446–453

  • Giesbrecht P, Wecke J (1981) Electron microscopic studies on the regeneration of staphylococci after treatment with antibiotics. In: Jeljaszewicz J (ed) Staphylococci and staphylococcal infections. Zbl Bakteriol Suppl 10. Gustav Fischer, Stuttgart, pp 455–459

    Google Scholar 

  • Giesbrecht P, Wecke J, Reinicke B (1976) On the morphogenesis of the cell wall of staphylococci. Int Rev Cytol 44:225–318

    Google Scholar 

  • Giesbrecht P, Morioka H, Krüger D, Kersten T, Wecke J (1983) Restoration of penicillin-damaged cell walls by de novo murein synthesis and successive murein degradation in staphylococci, revealing a hitherto unknown mechanism of penicillin action: blockage of autolytic wall processes by penicillin. In: Hakenbeck R, Höltje JV, Labischinski H (eds) The target of penicillin — The murein sacculus of bacterial cell walls. Architecture and growth. De Gruyter, Berlin New York, pp 243–248

    Google Scholar 

  • Krüger D, Giesbrecht P (1983) Microcalorimetric and electron microscopic investigation on staphylococci before and after treatment with penicillin and chloramphenicol and their combinations. In: Hakenbeck R, Höltje JV, Labischinski H (eds) The target of penicillin — The murein sacculus of bacterial cell walls. Architecture and growth. De Gruyter, Berlin New York, pp 273–278

    Google Scholar 

  • Lorian V (1975) Some effects of subinhibitory concentrations of penicillin on the structure and division of staphylococci. Antimicrob Agents Chemother 7:864–870

    Google Scholar 

  • Lorian V, Atkinson B (1976) Effects of subinhibitory concentrations of antibiotics on cross walls of cocci. Antimicrob Agents Chemother 9:1043–1055

    Google Scholar 

  • Murray RGE, Francombe WH, Mayall BH (1959) The effect of penicillin on the structure of staphylococcal cell walls. Canad J Microbiol 5:641–648

    Google Scholar 

  • Reinicke B, Blümel P, Labischinski H, Giesbrecht P (1985) Neither an enhancement of total autolytic wall degradation nor an inhibition of the incorporation of cell wall material are pre-requisites for penicillin-induced bacteriolysis in staphylococci. Arch Microbiol 141:309–314

    Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electronopaque stain in electron microscopy. J Cell Biol 17:208–212

    Google Scholar 

  • Rogers HJ, Perkins HR, Ward JB (1980) Microbial cell walls and membranes. Chapman and Hall, London New York

    Google Scholar 

  • Shockman GD, Daneo-Moore L, McDowell TD, Wong W (1981) Function and structure of the cell wall — its importance in the life and death of bacteria. In: Salton MRJ, Shockman GD (eds) Beta-lactam antibiotics. Academic Press, New York, pp 31–65

    Google Scholar 

  • Tipper DJ, Strominger JL (1965) Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-d-alanyl-d-alanine. Proc Natl Acad Sci USA 54:1133–1141

    Google Scholar 

  • Tomasz A (1979) The mechanism of the irreversible antimicrobial effects of penicillins: How beta-lactam antibiotics kill and lyse bacteria. Annu Rev Microbiol 33:113–137

    Google Scholar 

  • Tomasz A (1981) Penicillin tolerance and the control of murein hydrolases. In: Salton MRJ, Shockman GD (eds) Beta-lactam antibiotics. Academic Press, New York, pp 227–247

    Google Scholar 

  • Tomasz A, Höltje JV (1977) Murein hydrolases and the lytic and killing action of penicillin. In: Schlesinger D (ed) Microbiology 1977. American Soc for Microbiology, Washington DC, pp 209–215

    Google Scholar 

  • Waxman DJ, Strominger JL (1983) Penicillin-binding proteins and the mechanism of action of beta-lactam antibiotics. Annu Rev Biochem 52:825–869

    Google Scholar 

  • Wecke J, Giesbrecht P (1981) Electron microscopic studies on the “paradoxical” reaction of staphylococci during treatment with antibiotics. In: Jeljaszewicz J (ed) Staphylococci and staphylococcal infections. Zbl Bakteriol Suppl 10. Gustav Fischer, Stuttgart, pp 461–467

    Google Scholar 

  • Wecke J, Lahav M, Ginsburg I, Giesbrecht P (1982) Cell wall degradation of Staphylococcus aureus by lysozyme. Arch Microbiol 131:116–123

    Google Scholar 

  • Wecke J, Lahav M, Ginsburg I, Kwa E, Giesbrecht P (1983) Cell wall degradation of antibiotic-treated staphylococci under phagocyte-specific conditions: distinction between penicillininduced lytic effects and wall alterations caused by anticoagulants. In: Hakenbeck R, Höltjc JV, Labischinski H (eds) The target of penicillin — The murein sacculus of bacterial cell walls. Architecture and growth. De Gruyter, Berlin New York, pp 329–334

    Google Scholar 

  • Weidel W, Pelzer H (1964) Bagshaped macromolecules — a new outlook on bacterial cell walls. Adv Enzymol 26:193–232

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. Gerhart Drews on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giesbrecht, P., Labischinski, H. & Wecke, J. A special morphogenetic wall defect and the subsequent activity of “murosomes” as the very reason for penicillin-induced bacteriolysis in staphylococci. Arch. Microbiol. 141, 315–324 (1985). https://doi.org/10.1007/BF00428843

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00428843

Key words

Navigation