Skip to main content
Log in

29Si and 17O NMR investigations on Si−O−Ti bonds in solutions of diphenylsilanediol and titanium-tetra-isopropoxide

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The structural units in diphenylsilanediol/titanium-isopropoxide solutions with molar ratio Si:Ti between 1:0.1 and 1:5 were examined by means of 29Si and 17O NMR. The main component in solutions with molar ratio Si/Ti=1:0.1 is the chain-like octaphenyltetrasiloxanediol. With increasing Ti-isopropoxide content (1:0.25–1:05) Si−O−Ti units of the spirocyclic titanosiloxane Ti[O5Si4(C6H5)8]2 prevail in the solutions accompanied by the chain-like tetrasiloxanediol. The 29Si NMR spectra of 1:1 solutions indicate a lot of different Si containing building units with chemical shifts mainly between-40 and-46 ppm. The signals with a chemical shift between-40 and-46 ppm are probably caused by Si atoms which are connected via oxygen bridges directly (Si−O−Ti) or indirectly (Si−O−Si−O−Ti) with titanium. Contrary to the 1:1 solutions only one or two different species with Si−O−Ti units are present in high Ti-alkoxide containing solutions (1:5). 29Si and 17O NMR results reveal a quick hydrolysis of the Ti−O−Si bonds to titanium-oxo-hydroxo-polymers and phenylsiloxanediols or their isopropyl esters after the addition of water to the solutions. This separation into species only containing either Ti−O−Ti or Si−O−Si bonds can entail a decreased homogeneity of the reaction products on a molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Mackenzie and D.R. Ulrich, Ultrastructure Processing of Advanced Materials (J. Wiley, New York, 1988).

    Google Scholar 

  2. I.M. Thomas, in Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics, and Specialty Shapes, edited by L.C. Klein (Noyes Publications, Park Ridge, New Jersey, 1988).

    Google Scholar 

  3. R.C. Mehrotra, Chemistry, Spectroscopy and Application of Sol-Gel Glasses, edited by R. Reisfeld and C.K. Jorgensen (Springer Verlag, Berlin, Heidelberg, 1992).

    Google Scholar 

  4. H. Schmidt, J. Non-Cryst. Solids 100, 51–64 (1988).

    Google Scholar 

  5. C. Sanchez and F. Ribot, New J. Chem. 18, 1007–1047 (1994).

    Google Scholar 

  6. S. Dire, F. Babonneau, G. Cartuan, and J. Livage, J. Non-Cryst. Solids 147/148, 62–66 (1992).

    Google Scholar 

  7. C.J. Brinker and C.W. Scherer, Sol-Gel Science (Academic Press, New York, 1990).

    Google Scholar 

  8. G. Orcel and L.L. Hench, in Science of Ceramic Chemical Processing, edited by L.L. Hench (Wiley, 1982).

  9. C.J. Brinker and G.W. Scherer, in Sol-Gel Science (Academic Press, New York, 1990), pp. 745–785.

    Google Scholar 

  10. B.E. Yoldas, J. Non-Cryst. Solids 38/39, 81–86 (1980).

    Google Scholar 

  11. T. Nishide, F. Mizukami, and H. Yamaguchi, J. Sol-Gel Science and Technology 1, 113–121 (1994).

    Google Scholar 

  12. A. Kasgöz, K. Yoshimura, T. Misono, and Y. Abe, J. Sol-Gel Science and Technology 1, 185–191 (1994).

    Google Scholar 

  13. H. Schmidt and B. Seiferling, Mat. Res. Soc. Symp. Proc. 73, 739–750 (1986).

    Google Scholar 

  14. J. Jonas, A.D. Irwin, and J.S. Holmgren, in Ultrastructure Processing of Advanced Materials, edited by D.R. Uhlmann and D.R. Ulrich (J. Wiley, 1992), pp. 303–314.

  15. C.L. Schutte, J.R. Fox, R.D. Boyer, and D.R. Uhlmann, in Ultrastructure Processing of Advanced Materials, edited by D.R. Uhlmann and D.R. Ulrich (J. Wiley, 1992), pp. 95–102.

  16. F. Babonneau, Mat. Res. Soc. Symp. Proc. 346, 949–960 (1994).

    Google Scholar 

  17. F. Babonneau, J. Maquet, and J. Livage, Proc. Int. Symp. Sol-Gel Sci. and Tech. (Los Angles, 1994).

  18. K.A. Andrianov, Metalorganic Polymers, Polymer Review, Vol. 8 (Interscience, New York, 1965).

    Google Scholar 

  19. V.A. Zeitler and C.A. Brown, J. Am. Chem. Soc. 79, 4618–4621 (1957).

    Google Scholar 

  20. D. Becker, J.A. Ferretti, and P.N. Gambhir, Anal. Chem. 51, 1413–1420 (1979).

    Google Scholar 

  21. D. Hoebbel and T. Reinert, to be published.

  22. K.A. Andrianov, N.A. Kurasheva, and L.I. Kuteinikova, Zh. Obshch. Khim. 46, 1497 (1976).

    Google Scholar 

  23. M.B. Hursthouse and M.A. Hossain, Polyhedron 3, 95 (1984).

    Google Scholar 

  24. N.M. Rutherford, Ph.D. Thesis, University of California, 1987.

  25. G. Engelhardt, M. Mägi, and E. Lippmaa, J. Organomet. Chem. 54, 115–122 (1973).

    Google Scholar 

  26. S. Dire and F. Babonneau, J. Non-Cryst. Solids 167, 29–36 (1994).

    Google Scholar 

  27. V.W. Day, T.A. Eberspacher, W.G. Klemperer, C.W. Park, and F.S. Rosenberg, J. Am. Chem. Soc. 113, 8190–8192 (1991).

    Google Scholar 

  28. V.W. Day, T.A. Eberspacher, W.G. Klemperer, C.W. Park, and F.S. Rosenberg, in Chemical Processing of Advanced Materials, edited by L.L. Hench and J.K. West (J. Wiley, New York, 1992), pp. 257–265.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoebbel, D., Reinert, T. & Schmidt, H. 29Si and 17O NMR investigations on Si−O−Ti bonds in solutions of diphenylsilanediol and titanium-tetra-isopropoxide. J Sol-Gel Sci Technol 6, 139–149 (1996). https://doi.org/10.1007/BF00425971

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00425971

Keywords

Navigation