Skip to main content
Log in

Superparamegnetic iron oxides for MRI

  • State-of-the-Art
  • Contrast Media
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Pharmaceutical iron oxide preparations have been used as MRI contrast agents for a variety of purposes. These agents predominantly decrease T2 relaxation times and therefore cause a decrease in signal intensity of tissues that contain the agent. After intravenous adminstration, dextran-coated iron oxides typically accumulate in phagocytic cells in liver and spleen. Clinical trials have shown that iron oxide increases lesion/liver and lesion/spleen contrast, that more lesions can be depicted than on plain MRI or CT, and that the size threshold for lesion detection decreases. Decreased uptake of iron oxides in liver has been observed in hepatitis and cirrhosis, potentially allowing the assessment of organ function. More recently a variety of novel, target-specific monocrydtalline iron oxides compounds have been used for receptor and immunospecific images. Future development of targeted MRI contrast agents is critical for organ- or tissue-specific quantitative and functional MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weinmann HJ, Brasch RC, Press WR, Wesbey GE (1984) Characteristics of Gd-DTPA complex: a potential NMR contrast agent. AJR 142: 619–625

    Google Scholar 

  2. Brasch RC (1983) Work in progress: methods of contrast enhancement for NMR imaging and potential application. Radiology 147: 781–788

    Google Scholar 

  3. Brasch RC, Weinmann HJ, Wesbey GE (1984) Contrast-enhanced NMR imaging: animal studies using gadolinium-DTPA complex. AJR 142: 625–630

    Google Scholar 

  4. Brasch RC, Bennet HF (1988) Considerations in the choice of contrast media for MR imaging. Radiology 166: 897–899

    Google Scholar 

  5. Brasch RC (1992) New directions in the development of MR imaging contrast media. Radiology 183: 1–11

    Google Scholar 

  6. Gillis P, Koenig SH (1987) Transverse relaxation of solvent protons induced by magnetized spheres: application to ferritin, erythrocytes and magnetite. Magn Reson Med 5: 323–345

    Google Scholar 

  7. Fretz CJ, Elizondo G, Weissleder R, Hahn PF, Stark DD, Ferrucci JT (1989) Superparamagnetic iron oxide-enhanced MR imaging: pulse sequence optimization for detection of liver cancer. Radiology 172: 393–397

    Google Scholar 

  8. Bean CP, Livingston JD (1959) Superparamagnetism. J Appl Phys 30: 120S-129S

    Google Scholar 

  9. Widder DJ, Greif WL, Widder KJ, Edelman RR, Brady TJ (1987) Magnetite albumin microspheres: a new MR contrast material. AJR 148: 399–404

    Google Scholar 

  10. Carr HY, Purcell EM (1954) Effect of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94: 630–637

    Google Scholar 

  11. Majumdar S, Zoghbi S, Pope CF, Gore JC (1988) Quantitation of MR relaxation effects on iron oxide particles in liver and spleen. Radiology 169: 653–655

    Google Scholar 

  12. Majumdar S, Zoghbi S, Pope CF, Gore JC (1989) A quantitative study of relaxation rate enhancement produced by iron oxide particles in polyacrylamide gels and tissue. Magn Reson Med 9: 185–202

    Google Scholar 

  13. Hardy PA, Henkelman RM (1989) Transverse relaxation rate enhancement caused by magnetic particulates. Magn Reson Imaging 7: 265–275

    Google Scholar 

  14. Rozenman Y, Zou XM, Kantor HL (1990) Cardiovascular MR imaging with iron oxide particles: utility of a superparamagnetic contrast agent and the role of diffusion in signal loss. Radiology 175: 655–659

    Google Scholar 

  15. Ohghushi M, Nagayama K, Wada A (1978) Dextran magnetite: a new relaxation agent and its application to T2-measurements in gel systems. J Magn Reson 29: 599–601

    Google Scholar 

  16. Wolf GL, Burnett KR, Goldstein EJ, Joseph PM (1985) Contrast agents for magnetic resonance imaging. In: Magnetic resonance annual. New York: Raven Press, 1985

    Google Scholar 

  17. Mendoca-Dias MH, Lauterbur PC (1986) Ferromagnetic particles as contrast agents for magnetic resonance imaging of the liver and spleen. Magn Reson Med 3: 328–330

    Google Scholar 

  18. Josephson L, Lewis L, Jacobs P, Hahn PF, Stark DD (1988) The effects of iron oxides on proton relaxivity. Magn Reson Imaging 6: 647–653

    Google Scholar 

  19. Weissleder R, Stark DD, Compton CC, Wittenberg J, Ferrucci JT (1987) Ferrite-enhanced MR imaging of hepatic lymphoma: an experimental study in rats. AJR 149: 1161–1165

    Google Scholar 

  20. Magin RL, Bacic G, Alameda JC, Neisman MR, Wright SM, Swartz HM (1988) Dextran magnetite as a liver contrast agent. In: Society of Magnetic Resonance in Medicine, Seventh Annual Meeting, San Francisco

  21. Stark DD, Weissleder R, Elizondo G et al (1988) Superparamagnetic iron oxide: clinical application as a contrast agent for MR imaging of the liver. Radiology 168: 297–301

    Google Scholar 

  22. Fahlvik AK, Holtz E, Leander P, Schroder U, Klaveness J (1990) Magnetic starch microspheres: efficacy and elimination of a new organ-specific contrast agent for magnetic resonance imaging. Invest Radiol 25: 113–120

    Google Scholar 

  23. Maas R, Spielman RP, Bonacker M, et al (1991) Utrasmall magnetic particles coated with polyethyleneglycol as contrast agent in MRI of experimental abscesses: an animal study in mini-pigs. In: Society of Magnetic Resonance in Medicine, Tenth Annual Meeting, San Francisco, p 505

  24. Pouliquen D, Le Jeune JJ, Perdrisot R, Erimas A, Jallet P (1991) Iron oxide nanoparticles for use as an MRI contrast agent: pharmacokinetics and metabolism. Magn Reson Imaging 9: 275–283

    Google Scholar 

  25. Pouliquen D, Perroud H, Calza F, Jallet P, Le Jeune JJ (1992) Investigation of the magnetic properties of iron oxide nanoparticles used as a contrast agent. Magn Reson Med 24: 75–84

    Google Scholar 

  26. Weissleder R, Hahn PF, Stark DD, et al (1988) Superparamagnetic iron oxide: enhanced detection of focal splenic tumors with MR imaging. Radiology 169: 399–403

    Google Scholar 

  27. Hahn PF, Stark DD, Lewis JM, et al (1989) First clinical trial of a new superparamagnetic iron oxide for use as an oral superparamagnetic contrast agent in MR imaging. Radiology 175: 695–700

    Google Scholar 

  28. Rinck PA, Smevik O, Nilsen G, et al (1991) Oral magnetic particles in MR imaging of the abdomen and pelvis. Radiology 178: 775–779

    Google Scholar 

  29. Weissleder R, Papisov M (1992) Pharmaceutical iron oxides for MR imaging. Magn Reson Rev 4: 1–20

    Google Scholar 

  30. Molday RS, Mackenzie D (1982) Immunospecific ferromagnetic iron-dextran reagents for the labelling and magnetic separation of cells. J Immunol Methods 52: 353–367

    Google Scholar 

  31. Molday RS, Molday LL (1984) Separation of cells labeled with immunospecific iron dextran microspheres using high gradient magnetic chromatography. FEBS Lett 170: 232–238

    Google Scholar 

  32. Misawa T, Hashimoto K, Shimodaira S (1973) Formation of Fe(II)-Fe(III) intermediary grenn complex on oxidation of ferrous iron in neutral and slightly alkaline sulphate solutions. J Inorg Nucl Chem 35: 4107–4174

    Google Scholar 

  33. Papisov MI, Savelyev VY, Sergienko VB, Torchilin VP (1987) Magnetic drug targeting. I. In vivo kinetics of radiolabelled magnetic drug carriers. Int J Pharmacokinetics 40: 201–206

    Google Scholar 

  34. Papisov MI, Torchilin VP (1987) Magnetic drug targeting. I. Targeted drug transport by magnetic microparticles: factors influencing therapeutic effect. Int J Pharmacokinetics 40: 207 -214

    Google Scholar 

  35. Weissleder R, Stark DD, Engelstad BL, et al (1989) Superparamagnetic iron oxide: pharmacokinetics and toxicity. AJR 152: 167–173

    Google Scholar 

  36. Weissleder R, Lee AS, Fischman AJ, et al (1991) MR antibody imaging: polyclonal human IgG labelled with polymeric iron oxide. Radiology 181: 245–249

    Google Scholar 

  37. Reimer P, Kwong KK, Weisskoff R, Cohen MS, Brady TJ, Weissleder R (1992) Dynamic signal changes in liver with superparamagnetic MR contrast agents. J Magn Reson Imaging 2: 177–181

    Google Scholar 

  38. Josephson L, Bigler J, White D (1991) The magnetic properties of some materials affecting MR images. In: Workshop on contrast-enhanced magnetic resonance, Napa, California, 1991

    Google Scholar 

  39. Hershko C, Cook JD, Finch CA (1973) Storage iron kinetics. III. Study of desferrioxamine action by selective radioiron labels of RE and parenchymal cells. J Lab Clin Med 81: 876–886

    Google Scholar 

  40. Tavill AS, Bacon BR (1986) Hemochromatosis: how much is too much. Hepatology 6: 142–145

    Google Scholar 

  41. Weir MP, Gibson JF, Peters TJ (1984) Haemosiderosis and tissue damage. Cell Biochem Funct 2: 186–194

    Google Scholar 

  42. Bassett ML, Halliday JW, Powell LW (1986) Value of hepatic iron measurements in early hemochromatosis and determination of the critical iron level associated with fibrosis. Hepatology 6: 24–29

    Google Scholar 

  43. Kawamura Y, Endo K, Watanabe Y, et al (1990) Use of magnetite particles as a contrast agent for MR imaging of the liver. Radiology 174: 357–360

    Google Scholar 

  44. Josephson L, Groman EV, Menz LI, Luis JM, Bengele H (1990) A functionalized superparamagnetic iron oxide colloid as a receptor directed MR contrast agent. Magn Reson Imaging 8: 637–646

    Google Scholar 

  45. Niederau C, Fischer R, Sonnenberg A, Steremmel W, Trampisch HJ, Strohmeyer G (1985) Survival and causes of death in cirrhotic patients with primary hemochromatosis. N Engl J Med 313: 1256–1262

    Google Scholar 

  46. Bacon BR, Stark DD, Park CH, et al (1987) Ferrite particles: a new magnetic resonance imaging contrast agent. Lack of acute or chronic hepatoxicity after intravenous administration. J Lab Clin Med 110: 164–171

    Google Scholar 

  47. Snyder WS, Cook MJ, Nasset ES, Karhausen LR, Howells GP, Tipton IH (1974) Report of the task group on reference man. In: Report of the tark group and reference man. Oxford: Pergamon Press, 1974

    Google Scholar 

  48. Tsang YM, Stark DD, Chen MCM, Weissleder R, Wittenberg J, Ferrucci JT (1988) Hepatic micrometastasis in the rat: ferrite-enhanced MR imaging. Radiology 167: 21–24

    Google Scholar 

  49. Weissleder R, Stark DD, Compton CC, Ferrucci JT (1987) MRI of hepatic lymphoma: an experimental study in rodents using ferrite. AJR 149: 1161–1165

    Google Scholar 

  50. Weissleder R, Saini S, Stark DD, et al (1988) Pyogenic liver abscess: contrast-enhanced MR imaging in rats. AJR 150: 115–120

    Google Scholar 

  51. Magin RL, Bacic G, Neisman MR, Alameda JC, Wright SM, Swartz HM (1990) Dextran magnetite as a liver contrast agent. Magn Reson Med 20: 1–16

    Google Scholar 

  52. Marchal GY, Hecke P van, Demaerel P, et al (1989) Detection of liver metastases with superparamagnetic iron oxides in 15 patients. AJR 152: 771–775

    Google Scholar 

  53. Elizondo G, Weissleder R, Stark DD, et al (1990) Hepatic cirrhosis and hepatitis: MR imaging enhanced with superparamagnetic iron oxide. Radiology 174: 797–801

    Google Scholar 

  54. Clement O, Frija G, Chambon C, Schouman-Claeys E (1992) Superparamagnetic iron oxide-enhanced magnetic resonance imaging of experimental liver tumors after mitomycin C administration. Invest Radiol 27: 230–235

    Google Scholar 

  55. Weissleder R, Reimer P, Lee AS, Wittenberg J, Brady TJ (1990) MR receptor imaging: ultrasmall iron oxide particles targeted to asialoglycoprotein receptors. AJR 155: 1161–1167

    Google Scholar 

  56. Meijer DKF, Sluijs P van der (1987) The influence of binding to albumin and α1-binding glycoprotein on the clearance of drugs by the liver. Pharm Weekbl [Sci] 9: 65–74

    Google Scholar 

  57. Stockert RJ, Becker FF (1980) Diminished hepatic binding protein for desialyted glycoproteins during chemical hepatocarcinogensis. Cancer Res 40: 3632–3634

    Google Scholar 

  58. Sobue G, Kosaka A (1980) Asialoglycoproteinemia in a case of primary hepatic cancer. Hepatogastroenterology 27: 200–203

    Google Scholar 

  59. Marshall JS, Williams S, Jones P, Hepner GW (1978) Serum desialyted glycoproteins in patients with hepatobiliary dysfunction. J Lab Clin Med 92: 30–37

    Google Scholar 

  60. Sawamura T, Nakada H, Shiozaki Y, Sameshima Y, Tashiro Y (1984) Hy[erasialoglycoproteinemia in patients with chronic liver disease and/or liver cell carcinoma. Gastroenterology 87: 1217–1221

    Google Scholar 

  61. Blouin A, Bolender RP, Weibel ER (1977) Distribution of organelles and membranes between hepatocytes and non-hepatocytes in the rat liver parenchyma. J Cell Biol 72: 441–455

    Google Scholar 

  62. Knook DL, Sleyster EC (1977) In: Wisse E, Knook DL (eds) Kupffer cells and other liver sinusoidal cells. Amsterdam: Elsevier/North-Holland, 1977

    Google Scholar 

  63. Reimer P, Weissleder R, Lee AS, Wittenberg J, Brady TJ (1990) Receptor imaging: application to MR imaging of liver cancer. Radiology 177: 729–734

    Google Scholar 

  64. Baumann P, Eap CB, Mueller WE, Tillement JP (1989) Alpha1-acid glycoprotein: genetics, biochemistry, physiological functions, and pharmacology. In: Alpha1-acid glucoprotein. Genetics, biochemistry, physiological functions, and pharmacology. New York: Alan R. Liss, Inc. 1989

    Google Scholar 

  65. Reimer P, Weissleder R, Brady TJ, et al (1991) MR receptor imaging of experimental hepatocellular carcinoma. Radiology 180: 641–645

    Google Scholar 

  66. Reimer P, Weissleder R, Brady TJ, et al (1991) Experimental hepatocellular carcinoma: MR receptor imaging. Radiology 180: 641–645

    Google Scholar 

  67. Reimer P, Weissleder R, Lee AS, Buettner S, Wittenberg J, Brady TJ (1991) Asialoglycoprotein receptor function in benign liver disease: evaluation with MR imaging. Radiology 178: 769–774

    Google Scholar 

  68. Murphy FB, Barefield KP, Steinberg HV, Bernardino ME (1988) CT-or sonography-guided biopsy of the liver in the presence of ascites: frequency of complications. AJR 151: 485–486

    Google Scholar 

  69. Kudo M, Todo A, Ikekubo K, et al (1987) Estimation of hepatic functional reserve by asialoglycoprotein receptor-binding, radiolabeled synthetic ligand “Tc-99m-galactosyl-neoglycolalbumin”. Jpn J Nucl Med 24: 1653–1662

    Google Scholar 

  70. Kubota Y, Kojima M, Hazama H, et al (1986) A new liver function test using the asialoglycoprotein-receptor system on the liver cell membrane. I. Evaluation of liver imaging using the Tc-99m-neoglycoprotein. Jpn J Nucl Med 23: 899–905

    Google Scholar 

  71. Kawa S, Hazama H, Kojima M, et al (1986) A new liver function test using the asialoglycoprotein-receptor system on the liver cell membrane. II. Quantitative evaluation of labeled neoglycoprotein clearance. Jpn J Nucl Med 23: 907–916

    Google Scholar 

  72. Hazama H, Kawa S, Kubota Y, et al (1986) A new liver function test using the asialoglycoprotein-receptor system on the liver cell membrane. III. Evaluation for usefulness by liver function test using the Tc-99m-neoglycoprotein. Jpn J Nucl Med 23: 917–926

    Google Scholar 

  73. Woodle ES, Vera DR, Stadalnik RC, Ward RE (1987) Tc-NGA imaging in liver transplantation: preclinical studies. Surgery 102: 55–62

    Google Scholar 

  74. Weissleder R, Stark DD, Rummeny EJ, Compton CC, Ferrucci JT (1988) Splenic lymphoma: ferrite-enhanced MR imaging in rats. Radiology 166: 423–430

    Google Scholar 

  75. Weissleder R, Hahn P, Stark DD, et al (1987) MR imaging of splenic metastases: ferrite-enhanced detection in rats. AJR 149: 723–726

    Google Scholar 

  76. Weissleder R, Elizondo G, Stark DD, et al (1989) The diagnosis of splenic lymphoma by MR imaging: value of superparamagnetic iron oxide. AJR 152: 175–180

    Google Scholar 

  77. Weissleder R, Hahn PF, Stark DD, et al (1987) MRI of the spleen: ferrite enhanced detection of splenic metastases. AJR 149: 723–726

    Google Scholar 

  78. Weissleder R, Elizondo G, Wittenberg J, Rabito C, Bengele HH, Josephson L (1990) Ultrasmall superparamagnetic iron oxide (USPIO): characterization of a new class of MR contrast agents. Radiology 175: 489–493

    Google Scholar 

  79. Seneterre ES, Weissleder R, Jaramillo D, et al (1991) Bone marrow: ultrasmall superparamagnetic iron oxide for MR imaging. Radiology 179: 529–533

    Google Scholar 

  80. Weissleder R, Elizondo G, Josephson L, et al (1989) Experimental lymph node metastases: enhanced detection with MR lumphography. Radiology 171: 835–839

    Google Scholar 

  81. Weissleder R, Elizondo G, Wittenberg J, Lee AS, Josephson L, Brady TJ (1990) Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology 175: 494–498

    Google Scholar 

  82. Taupitz M, Hamm B, Wagner S, Binder A, Wolf KJ (1991) MR lymphography using iron oxide particles: experimental studies in tumor-free and VX2 tumor-bearing rabbits. In: Society of Magnetic Resonance in Medicine, Tenth Annual Scientific Meeting and Exhibition, San Francisco, USA, 1991:233

  83. Hamm B, Taupitz M, Hussmann P, Wagner S, Wolf KJ (1992) MR lymphography with iron oxide particles: dose-response studies and pulse sequence optimization in rabbits. AJR 158: 183–190

    Google Scholar 

  84. Taupitz M, Wagner S, Hamm B, Dienemann D, Lawaczeck R, Wolf KJ (1992) MR lymphography using iron oxide particles: detection of lymph node metastases in the VX2 rabbit tumor model. Acta Radiologica 1993 (in press)

  85. Lee AS, Weissleder R, Wittenberg J, Brady TJ (1991) Lymph nodes: microstructural anatomy by MR imaging. Radiology 178: 519–522

    Google Scholar 

  86. Hahn PF, Stark DD, Saini S, Lewis JM, Wittenberg J, Ferrucci JT (1987) Ferrite particles for bowel contrast in MR imaging: design issues and feasibility studies. Radiology 164: 37

    Google Scholar 

  87. Majumdar S, Zoghbi S, Gore JC (1988) Regional differences in rat brain displayed by fast MRI with superparamagnetic contrast agents. Magn Reson Med 6: 611–615

    Google Scholar 

  88. Kent TA, Quast MJ, Kaplan BJ, Lifsey RS, Eisenberg HM (1990) Assessment of a superparamagnetic iron oxide (AMI-25) as a brain contrast agent. Mag Reson Med 13: 434–443

    Google Scholar 

  89. White DL, Aicher KP, Tzika AA, Kucharzyk J, Engelstad B, Moseley ME (1992) Iron-dextran as a magnetic susceptibility contrast agent: flow-related contrast effects in the T2-weighted spin-echo MRI of normal rat and cat brain. Magn Reson Med 24: 14–28

    Google Scholar 

  90. Bulte JWM, De Jonge MWA, Kamman RL, et al (1992) Dextran-magnetite particles: contrast-enhanced MRI of blood-brain barrier d disruption in a rat model. Mag Reson Med 23: 215–223

    Google Scholar 

  91. Weissleder R, Bogdanov A, Papisov M (1992) Drug targeting in magnetic resonance imaging. Magn Reson Q 8: 55–63

    Google Scholar 

  92. Weissleder R, Lee AS, Khaw BA, Shen T, Brady TJ (1992) Antimyosin-labelled monocrystalline iron oxide allows detection of myocardial infarct: MR antibody imaging. Radiology 182: 381–385

    Google Scholar 

  93. Chan TW, Eley C, Kressel HY (1991) MR imaging of abscess and tumor using lipid-coated iron oxide particles. In: Society of Magnetic Resonance in Medicine, Tenth Annual Meeting, San Francisco, p 54

  94. Tsai E, Bogdanov A, Papisov M, Brady TJ, Weissleder R (1992) Lymphocytes as carriers for MR contrast agents. In: Society of Magnetic Resonance in Medicine, Eleventh Annual Meeting, Berlin. accepted for publication

  95. Chan TW, So A, Kressel HY (1990) In-vitro incorporation of iron oxide particles into peripheral phagocytic cells. In: Society of Magnetic Resonance in Medicine, Ninth Annual Meeting, New York, p 749

  96. Ghosh P, Zhou X, Lin W, Feng AS, Groman E, Lauterbur PC (1991) Neuronal tracing with magnetic labels. In: Society of Magnetic Resonance in Medicine, Tenth Annual Meeting, San Francisco, p 1042

  97. Filler AG, Winn HR, Howe FA, Griffiths JR, Bell BA, Deacon TW (1991) Axonal transport of superparamagnetic metal oxide particle: potential of magnetic resonance assessments of axoplasmic flow in clinical neuroscience. In: Society of Magnetic Resonance in Medicine, Tenth Annual Meeting, San Francisco, pp 985

  98. Achord DT, Brot FE, Sly WS (1977) Inhibition of the rat clearance system for agalacto-orosomucoid by yeast mannans and by mannose. Biochem Biophys Res Commun 77: 409–415

    Google Scholar 

  99. Stahl PD, Rodman JS, Miller MJ, Schlesinger PH (1978) Evidence for receptor-mediated binding of glycoproteins, glycoconjugates, and lysosomal glycosidases by alveolar macrophages. Proc Natl Acad Sci USA 75: 1399–1403

    Google Scholar 

  100. Ashwell G, Harford J (1982) Carbohydrate-specific receptors of the liver. Annu Rev Biochem 51: 531–554

    Google Scholar 

  101. Prieels JP, Pizzo SV, Glasgow LR, Paulson JC, Hill RL (1978) Hepatic receptor that specifically binds oligosaccharides containing fucosyl α1, 3-N-acetylglucosamine linkages. Proc Natl Acad Sci USA 75: 2215–2219

    Google Scholar 

  102. Reimer P, Shen T, Lee AS, Brady TJ, Weissleder R (1992) Effect of polysaccharide coated iron oxide particles on liver relaxation times. In: Society of Magnetic Resonance in Medicine, Eleventh Annual Meeting, Berlin, p 3224

  103. Cerdan S, Lötscher HR, Künnecke B, Seelig J (1989) Monoclonal antibody-coated magnetite particles as contrast agents in magnetic resonance imaging of tumors. Magn Reson Med 12: 151–163

    Google Scholar 

  104. Khaw BA, Bailes JS, Schneider SL, et al (1988) Human breast tumor imaging using 111In labelled monoclonal antibody: athymic mouse model. Eur J Nucl Med 14: 362–366

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: R. Weissleder

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weissleder, R., Reimer, P. Superparamegnetic iron oxides for MRI. Eur. Radiol. 3, 198–212 (1993). https://doi.org/10.1007/BF00425895

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00425895

Key words

Navigation