Skip to main content
Log in

The glucose repression and RAS-cAMP signal transduction pathways of Saccharomyces cerevisiae each affect RNA processing and the synthesis of a reporter protein

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

Previously we reported that mutations in the Saccharomyces cerevisiae REG1 gene encoding a negative regulator of glucose-repressible genes, suppress the RNA processing defects and temperature-sensitive growth of rna1-1 and prp cells. This result and the fact that growth on non-glucose carbon sources also suppresses rna1-1 led us to propose that RNA processing and export of RNA from the nucleus are responsive to carbon source regulation. To understand how carbon source affects these processes, we used p70, an antigen regulated by REGI and by glucose availability, as a reporter. We found that the response of p70 to glucose availability is mediated by both the SNFI-SSN6-dependent glucose repression and the RAS-cAMP pathways. These results led us to test whether the RAS-cAMP pathway interacts with RNA1. We found that suppression of rnal-1 appears to be mediated, at least in part, by the RAS-cAMP pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amberg DC, Goldstein AL, Cole CN (1992) Isolation and characterization of RAT1: an essential gene of Saccharomyces cerevisiae required for the efficient nucleocytoplasmic trafficking of mRNA. Genes Dev 6:1173–1189

    Article  CAS  Google Scholar 

  • Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    Article  CAS  Google Scholar 

  • Broach JR, Deschenes RJ (1990) The function of RAS genes in Saccharomyces cerevisiae. Adv Cancer Res 54:79–139

    Article  CAS  Google Scholar 

  • Carlson M, Osmond BC, Botstein D (1981) Mutants of yeast defective in sucrose utilization. Genetics 98:25–40

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carlson M, Osmond BC, Neigeborn L, Botstein D (1984) A suppressor of snf1 mutations causes constitutive high-level invertase synthesis in yeast. Genetics 107:19–32

    CAS  PubMed  PubMed Central  Google Scholar 

  • Celenza JL, Carlson M (1986) A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science 233:1175–1180

    Article  CAS  Google Scholar 

  • Dombek KM, Camier S, Young ET (1993) ADH2 expression is repressed by REG1 independently of mutations that alter the phosphorylation of the yeast transcription factor ADR1. Mol Cell Biol 13:4391–4399

    Article  CAS  Google Scholar 

  • Forrester W, Stutz F, Rosbash M, Wickens M (1992) Defects in mRNA 3′-end formation, transcription initiation, and mRNA transport associated with the yeast mutation prp20: possible coupling of mRNA processing and chromatin structure. Genes Dev. 6:1914–1926

    Article  CAS  Google Scholar 

  • Goldstein A, Lampen JO (1975) β-D-Fructofuranoside fructohydrolase from yeast. Methods Enzymol 42C:504–511

    Article  Google Scholar 

  • Hopper AK, Banks F, Evangelidis V (1978) A yeast mutant which accumulates precursor tRNAs. Cell 14:211–219

    Article  CAS  Google Scholar 

  • Hopper AK, Traglia HM, Dunst RW (1990) The yeast RNA1 gene product necessary for RNA processing is located in the cytosol and apparently excluded from the nucleus. J Cell Biol 111:309–321

    Article  CAS  Google Scholar 

  • Hubbard EJA, Yang X, Carlson M (1992) Relationship of the cAMP-dependent protein kinase pathway to the SNF1 protein kinase and invertase expression in Saccharomyces cerevisiae. Genetics 130:71–80

    CAS  PubMed  Google Scholar 

  • Hutchison HT, Hartwell LH, McLaughlin CS (1969) Temperature-sensitive yeast mutant defective in ribonucleic acid production. J Bacteriol 99:807–814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston M, Carlson M (1992) Regulation of carbon and phosphate utilization. In: Jones EW, Pringle JR, Broach JR (eds) The molecular biology of the yeast Saccharomyces: gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 193–281

    Google Scholar 

  • Keleher CA, Redd MJ, Schultz J, Carlson M, Johnson AD (1992) Ssn6-Tupl is a general repressor of transcription in yeast. Cell 68:709–719

    Article  CAS  Google Scholar 

  • Knapp G, Beckmann JS, Johnson PF, Fuhrman SA, Abelson J (1978) Transcription and processing of intervening sequences in yeast tRNA genes. Cell 14:221–236

    Article  CAS  Google Scholar 

  • Maddock J-R, Weidenhammer EM, Adams CC, Lunz RL, Woolford JL Jr (1994) Extragenic suppressors of Saccharomyces cerevisiae prp4 mutations identify a negative regulator of PRP genes. Genetics 136:833–847

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Mermoud JE, Cohen P, Lamond AI (1992) Scr/Thr-specific protein phosphatases are required for both catalytic steps of pre-mRNA splicing. Nucleic Acids Res 20:5263–5269

    Article  CAS  Google Scholar 

  • Mortimer R, Hawthorne D (1969) Yeast genetics. In: Rose AH, Harrison JS (eds) The yeasts, vol 1. Academic Press, New York, pp 385–460

    Google Scholar 

  • Neigeborn L, Carlson M (1987) Mutations causing constitutive invertase synthesis in yeast: genetic interactions with snf mutations. Genetics 115:247–253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niederacher D, Entian K-D (1987) Isolation and characterization of the regulatory HEX2 gene necessary for glucose repression in yeast. Mol Gen Genet 206:505–509

    Article  CAS  Google Scholar 

  • Niederacher D, Entian KD (1991) Characterization of Hex2 protein, a negative regulatory element necessary for glucose repression in yeast. Eur J Biochem 200:311–319

    Article  CAS  Google Scholar 

  • Nolan SL (1989) Analysis of a suppressor of the yeast mutation rnal-1. PhD thesis, Pennsylvania State University, Hershey, USA

    Google Scholar 

  • Pearson, NJ, Thorburn PC, Haber JE (1982) A suppressor of temperature-sensitive rna mutations that affect mRNA metabolism in Saccharomyces cerevisiae. Mol Cell Biol 2:571–577

    Article  CAS  Google Scholar 

  • Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356

    Article  CAS  Google Scholar 

  • Robinson MR, van Zyl WH, Phizicky EM, Broach JR (1994) TPD1 of S. cerevisiae encodes a protein phosphatase 2C-like activity implicated in tRNA splicing and cell separation. Mol Cell Biol 14:3634–3645

    Article  CAS  Google Scholar 

  • Rothstein RJ (1983) One-step gene disruption in yeast. Methods Enzymol 101:202–211

    Article  CAS  Google Scholar 

  • Rymond BC, Rosbash M (1992). Yeast pre-mRNA splicing. In: Jones EW, Pringle JR, Broach JR (eds) The molecular biology of the yeast Saccharomyces: gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 143–192

    Google Scholar 

  • Schultz J, Carlson M (1987) Molecular analysis of SSN6, a gene functionally related to the SNF1 protein kinase of Saccharomyces cerevisiae. Mol Cell Biol 7:3637–3645

    Article  CAS  Google Scholar 

  • Shin D-Y, Matsumoto K, Iida H, Uno I, Ishikawa T (1987) Heat shock response of Saccharomyces cerevisiae mutants altered in cyclic AMP-dependent protein phosphorylation. Mol Cell Biol 7:244–250

    Article  CAS  Google Scholar 

  • Shiokawa K, Pogo AO (1974) The role of cytoplasmic membranes in controlling the transport of nuclear messenger RNA and initiation of protein synthesis. Proc Natl Acad Sci USA 71:2658–2662

    Article  CAS  Google Scholar 

  • Tazi J, Kornstadt U, Rossi F, Jeanteur P, Cathala G, Brunel C, Lührmann R (1993) Thiophosphorylation of Ul-70K protein inhibits pre-mRNA splicing. Nature 363:283–286

    Article  CAS  Google Scholar 

  • Thompson-Jaeger S, Francois J, Gaughran JP, Tatchell K (1991) Deletion of SNF1 affects the nutrient response of yeast and resembles mutations which activate the adenylate cyclase pathway. Genetics 129:697–706

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trumbly RJ (1986) Isolation of Saccharomyces cerevisiae mutants constitutive for invertase synthesis. J Bacteriol 166:1123–1127

    Article  CAS  Google Scholar 

  • Trumbly RJ (1992) Glucose repression in yeast Saccharomyces cerevisiae. Mol Microbiol 6:15–21

    Article  CAS  Google Scholar 

  • Tung, K-S, Norbeck LL, Nolan SL, Atkinson NS, Hopper AK (1992) SRN1, a yeast gene involved in RNA processing, is identical to HEX2/REG1, a negative regulator in glucose repression. Mol Cell Biol 12:2673–2680

    Article  CAS  Google Scholar 

  • Turcq B, Dobinson KF, Serizawa N, Lambowitz AM (1992) A protein required for RNA processing and splicing in Nettrospora mitochondria is related to gene products involved in cell cycle protein phosphatase functions. Proc Natl Acad Sci USA 89:1676–1680

    Article  CAS  Google Scholar 

  • van Zyl WH, Wills N, Broach JR (1989) A general screen for mutants of Saccharomyces cerevisiae deficient in tRNA biosynthesis. Genetics 123:55–68

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. P. Hollenberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tung, KS., Hopper, A.K. The glucose repression and RAS-cAMP signal transduction pathways of Saccharomyces cerevisiae each affect RNA processing and the synthesis of a reporter protein. Molec. Gen. Genet. 247, 48–54 (1995). https://doi.org/10.1007/BF00425820

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00425820

Key words

Navigation