Skip to main content
Log in

A single blood lactate determination as an indicator of cycle ergometer endurance capacity

  • Published:
European Journal of Applied Physiology and Occupational Physiology Aims and scope Submit manuscript

Summary

In an attempt to develop a submaximal exercise test protocol for the evaluation of physical work capacity, the blood lactate responses to an incremental and an acute exercise protocol have been investigated. Twelve males performed two cycle ergometer exercise tests: (1) a continuous, incremental (IncEx) protocol with 50 W steps every 4 min to exhaustion; (2) an acute exercise bout (AcEx) for 7 min at 200 W. Blood lactate concentration was determined for every stage of the IncEx protocol and after 4, 5, 6, and 7 min of the AcEx protocol. Time to exhaustion was correlated with the power output calculated to elicit 4 mmol×l−1 blood lactate with IncEx and with the lactate concentration measured 6 min after the onset of AcEx. These two parameters were related to both the percentage of slow twitch fibres and the capillary density in the M. vastus lateralis. The data are interpreted as suggesting that, with regard to lactate accumulation during IncEx, training status starts to exert its effects at relatively low exercise intensities. In addition, those factors which contribute to a delay in lactate accumulation during IncEx also contribute to the ability to avoid high blood lactate concentrations after AcEx. The lactate response to an acute, submaximal exercise bout offers a viable alternative to maximal exercise testing for mass testing of endurance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen P (1975) Capillary density in skeletal muscle of man. Acta Physiol Scand 95: 203–205

    Google Scholar 

  • Ahlborg B, Linroth K, Nordgren B, Schéle R (1973) Ett hÄlsooch kapacitetsundersökningssystem för personalselektion. Försvarsmedicin 9: 36–52

    Google Scholar 

  • Bang O (1936) The lactate content of the blood during and after muscular exercise in man. Skand Arch Physiol [Suppl 10] 74: 51–82

    Google Scholar 

  • Bergström J (1962) Muscle electrolytes in man. Scand J Clin Lab Invest [Suppl] 68

    Google Scholar 

  • Brooke MH, Kaiser KK (1970) Three “myosin adenosine triphosphatase” systems: the nature of their pH lability and sulfhydryl dependence. J Histochem Cytochem 18: 670–672

    Google Scholar 

  • Cerretelli P, Pendergast D, Paganelli WC, Rennie DM (1979) Effects of specific muscle training on \(\dot V\)O2 on-response and early blood lactate. J Appl Physiol: Respirat Environ Exercise Physiol 47: 761–769

    Google Scholar 

  • Ekblom B, åstrand P-O, Saltin B, Stenberg J, Wallström B (1968) Effect of training on circulatory response to exercise. J Appl Physiol 24: 518–528

    Google Scholar 

  • Farrell PA, Wilmore J, Coyle E, Billing J, Costill D (1979) Plasma lactate accumulation and distance running performance. Med Sci Sports 11: 338–344

    Google Scholar 

  • Föhrenback R, Mader A, Hollman W (1981) Umfang und IntensitÄt im Dauerlauftraining von MittelstreckenlÄuferinnen des DLV und Ma\nahmen zur individuellen Trainings- und Wettkampfoptimierung. Leistungssport 11: 458–472

    Google Scholar 

  • Guth L, Samaha F (1970) Procedures for the histochemical demonstration of actomyosin ATPase. Exp Neurol 28: 365–367

    Google Scholar 

  • Hickson RC, Bomze HA, Holoszy JO (1978) Faster adjustment of O2 uptake to the energy requirement of exercise in the trained state. J Appl Physiol: Respirat Environ Exercise Physiol 44: 877–881

    Google Scholar 

  • Hollman W, Liesen H, Mader A, Heck H, Rost R, Dufaux B, Schürch P, Lagerström D, Föhrenback R (1981) Zur Höchst- und DauerleistungsfÄhigkeit der deutschen Fu\ball-Spit-zenspieler. Dtsch Z Sportmedizin 32: 113–120

    Google Scholar 

  • Ivy J, Withers R, van Handel P, Elger D, Costill D (1980) Muscle respiratory capacity and fiber type as determinants of the lactate threshold. J Appl Physiol: Respirat Environ Exercise Physiol 48: 523–527

    Google Scholar 

  • Jacobs I (1981) Lactate, muscle glycogen and exercise performance in man. Acta Physiol Scand [Suppl] 495

    Google Scholar 

  • LaFontaine TP, Londeree BR, Spath WK (1981) The maximal steady state versus selected running events. Med Sci Sports Exerc 13: 190–193

    Google Scholar 

  • Karlsson J, Nordesjö L-O, Jorfeldt L, Saltin B (1972) Muscle lactate, ATP, and CP levels during exercise after physical training in man. J Appl Physiol 33: 199–203

    Google Scholar 

  • Mader A, Liesen H, Heck H, Philippi H, Rost R, Schürch P, Hollman W (1976) Zur Beurteilung der sportartspezifischen AusdauerleistungsfÄhigkeit im Labor. Sportarzt und Sportmedizin 27: 109–112

    Google Scholar 

  • Nordesjö L-O (1974) Estimation of the maximal work rate sustainable for 6 min using a single-level load or stepwise increasing loads. Upsala J Med Sci 79: 45–50

    Google Scholar 

  • Nordesjö L-O, Schéle R (1974) Validity of an ergometer cycle test and measures of isometric muscle strength when predicting some aspects of military performance. Försvarsmedicin 10: 11–23

    Google Scholar 

  • Roth V, Pansold B, Hasart E, Zinner J, Gabriel B (1981) Zum Informationsgehalt leistungsdiagnostischer Parameter in AbhÄngigkeit von der Zunahme der LeistungsfÄhigkeit bei Sportlern. Med Sport 21: 326–336

    Google Scholar 

  • Rydevik U, Nord L, Ingman F (1982) Automatic lactate determination by flow injection analysis. Int J Sports Med 3: 47–49

    Google Scholar 

  • Schéle R, Ahlborg B, Ekbom K (1978) Physical characteristics and allergic history in young men with migraine and other headaches. Headache 18: 80–86

    Google Scholar 

  • Sjödin B, Jacobs I (1981) Onset of blood lactate accumulation and marathon running performance. Int J Sports Med 2: 23–26

    Google Scholar 

  • Sjödin B, Jacobs I, Karlsson J (1981) Onset of blood lactate accumulation and enzyme activities in M. vastus lateralis in man. Int J Sports Med 2: 166–170

    Google Scholar 

  • Sjödin B, Jacobs I, Svedenhag J (1982) Changes in onset of blood lactate accumulation (OBLA) and muscle enzymes after training at OBLA. Eur J Appl Physiol 49: 45–57

    Google Scholar 

  • Stegmann H, Kindermann W (1982) Comparison of prolonged exercise tests at the individual anaerobic threshold and the fixed anaerobic threshold of 4 mmol·l−1. Int J Sports Med 3: 105–110

    Google Scholar 

  • Tesch PA, Sharp DS, Daniels WL (1981) Influence of fiber type composition and capillary density on onset of blood lactate accumulation. Int J Sports Med 2: 252–255

    Google Scholar 

  • Tornvall G (1963) Assessment of physical capabilities. Acta Physiol Scand [Suppl] 201

    Google Scholar 

  • Wasserman K, Whipp BJ (1975) Exercise physiology in health and disease. Am Rev Respir Dis 112: 219–249

    Google Scholar 

  • Weltman A, Katch V (1976) Minute-by-minute respiratory exchange and oxygen uptake kinetics during steady state exercise in subjects of high and low max \(\dot V\)O2. Res Q 47: 490–498

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobs, I., Sjödin, B. & Schéle, R. A single blood lactate determination as an indicator of cycle ergometer endurance capacity. Europ. J. Appl. Physiol. 50, 355–364 (1983). https://doi.org/10.1007/BF00423241

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00423241

Key words

Navigation