Skip to main content
Log in

A non-specific Ca2+ (or Mg2+)-stimulated ATPase in rat heart sarcoplasmic reticulum

  • Original Article
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

ATPase activity in rat heart sarcoplasmic reticulum was stimulated in a concentration-dependent manner by both Ca2+ and Mg2+ in the complete absence of the other cation. Increasing concentrations of Mg2+ produced an apparent inhibition of the Ca2+-dependent ATP hydrolysis. CDTA (trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetate) had no effect on these responses. The results indicate the presence of a low affinity non-specific divalent cation-stimulated ATPase in rat heart sarcoplasmic reticulum. However, sarcoplasmic reticulum vesicles transported Ca2+ with a high affinity (K0.5 Ca2+ = 0.41 μM) suggesting the presence of a high affinity Ca2+-transporting ATPase. Calmodulin did not stimulate rat heart sarcoplasmic reticulum ATPase activity over a range of Ca2+ and Mg2+ concentrations and failed to stimulate membrane phosphorylation and Ca2+ transport into sarcoplasmic reticulum vesicles. Calmodulin antagonists trifluoperazine and compound 48180 did not affect the ATPase activity. Catalytic subunit of cAMP-dependent protein kinase was also ineffective in stimulating the ATPase activity. These results suggest the presence of an ATPase activity in rat heart sarcoplasmic reticulum with different properties from the high affinity Ca2+-pumping ATPase previously characterized in dog heart and other species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cAMP:

adenosine 3′,5′-monophosphate

CaM:

calmodulin

CDTA:

trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetate

EDTA:

ethylene-diaminetetraacetate

EGTA:

ethylene glycol bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetate

PLB:

phospholamban

SR:

sarcoplasmic reticulum

TFP:

trifluoperazine

References

  1. Shamoo EA, Ambudkar IS: Regulation of calcium transport in cardiac cells. Can J Physiol Pharmacol 62: 9–22, 1984

    Google Scholar 

  2. Lopaschuk GD, Tahiliani AG, Vadlamudi RVSV, Katz S, McNeill JH: Cardiac sarcoplasmic reticulum function in insulin- or carnitine-treated diabetic rats. Am J Physiol 245:H969–H976, 1983

    Google Scholar 

  3. Takacs IE, Szabo J, Nosztray K, Szentmiklosi AJ, Cseppento A, Szegi J: Alterations of contractility and sarcoplasmic reticulum function of rat heart in experimental hypo and hyperthyroidism. Gen Physiol Biophys 4: 271–278, 1985

    Google Scholar 

  4. Hasselbach W: The reversibility of the sarcoplasmic reticulum calcium pump. Biochim Biophys Acta 515: 23–53, 1978

    Google Scholar 

  5. Nayler WG, Dunnet J, Berry D: The calcium accumulating activity of subcellular fractions isolated from rat and guinea pig heart muscle. J Mol Cell Cardiol 7: 275–288, 1975

    Google Scholar 

  6. Penpargkul S: Effects of adenine nucleotides on calcium binding by rat heart sarcoplasmic reticulum. Cardiovasc Res 13: 243–253, 1979

    Google Scholar 

  7. Tada M, Inui M: Regulation of calcium transport by the ATPase-phospholamban system. J Mol Cell Cardiol 15: 565–575, 1983

    Google Scholar 

  8. Katz S, Remtulla MA: Phosphodiesterase protein activator stimulates calcium transport in cardiac microsomal preparations enriched in sarcoplasmic reticulum. Biochem Biophys Res Commun 83: 1373–1379, 1978

    Google Scholar 

  9. Movsesian MA, Nishikawa M, Adelstein RS: Phosphorylation of phospholamban by calcium-activated, phospholipid-dependent protein kinase. Stimulation of cardiac sarcoplasmic reticulum calcium uptake. J Biol Chem 259: 8029–8032, 1984

    Google Scholar 

  10. LePeuch CJ, Haiech J, Demaille JG: Concerted regulation of cardiac sarcoplasmic reticulum calcium transport by cyclic adenosine monophosphate-dependent and calcium-calmodulin-dependent phosphorylation. Biochemistry 18: 5150–5157, 1979

    Google Scholar 

  11. Tada M, Kirchberger MA, Katz AM: Phosphorylation of a 22,000 dalton component of the cardiac sarcoplasmic reticulum by adenosine 3′,5′-monophosphate-dependent protein kinase. J Biol Chem 250: 2640–2647, 1975

    Google Scholar 

  12. Tada M, Katz AM: Phosphorylation of the sarcoplasmic reticulum and sarcolemma. Annu Rev Physiol 44: 401–423, 1982

    Google Scholar 

  13. deWeilenmann CM, Vittone L, deCingolani G, Mattiazzi, A: Dissociation between contraction and relaxation: The possible role of phospholamban phosphorylation. Basic Res Cardiol 82: 507–516, 1987

    Google Scholar 

  14. Black SC, McNeill JH, Katz S: Sarcoplasmic reticulum Ca2+ transport and long chain acylcarnitines in hyperthyroidism. Can J Physiol Pharmacol 66: 159–165, 1988

    Google Scholar 

  15. Bradford M: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254, 1976

    Google Scholar 

  16. Blostein R: Sodium-activated adenosine triphosphatase activity of the erythrocyte membrane. J Biol Chem 245: 270–275, 1970

    Google Scholar 

  17. Goldstein D: Calculation of the concentration of the free cations and cation-ligand complexes in solutions containing multiple divalent-cations and ligands. Biophys J 26: 235–242, 1979

    Google Scholar 

  18. Eibschutz B, Wong APG, Lopaschuk GD, Katz S: The presence and binding characteristics of calmodulin in mircosomal preparations enriched in sarcoplasmic reticulum from rabbit skeletal muscle. Cell Calcium 5: 391–400, 1984

    Google Scholar 

  19. Lotersztajn S, Hanoune J, Pecker F: A high affinity calcium-stimulated magnesium dependent ATPase in rat liver plasma membranes. Dependence on an endogenous activator distinct from calmodulin. J Biol Chem 256: 11209–11215, 1981

    Google Scholar 

  20. Pershadsingh HA, McDonald JM: A high affinity calcium-stimulated magnesium-dependent adenosine triphosphatase in rat adipocyte plasma membranes. J Biol Chem 255: 4087–4093, 1980

    Google Scholar 

  21. Verma AK, Penniston IT: A high affinity Ca2+-stimulated and Mg2+-dependent ATPase in rat corpus luteum plasma membrane fractions. J Biol Chem 256: 1269–1275, 1981

    Google Scholar 

  22. Ansah T-A, Molla A, Katz S: Ca2+-ATPase activity in pancreatic acinar plasma membranes. Regulation by calmodulin and acidic phospholipids. J Biol Chem 259: 13442–13450, 1984

    Google Scholar 

  23. Murray E, Gorsky JP, Penniston JT: High-affinity Ca2+stimulated and Mg2+-dependent ATPase from rat osteosarcoma. Biochem Intl 6: 527–533, 1983

    Google Scholar 

  24. Parkinson DK, Radde IC: Properties of a Ca2+-and Mg2+-activated ATP-hydrolyzing enzyme in rat kidney cortex. Biochim Biophys Acta 242: 238–246, 1971

    Google Scholar 

  25. Anand-Srivastava MB, Panagia V, Dhalla NS: Properties of Ca 2+ or Mg2+ dependent ATPase in rat heart sarcolemma. Adv Myocardiol 3: 359–371, 1982

    Google Scholar 

  26. Zhao D, Dhalla NS: Characterization of rat heart plasma membrane Ca2+/Mg2+ ATPase. Arch Biochem Biophys 263:281–292, 1988

    Google Scholar 

  27. NagDas SK, Mukherjee S, Mazumder B, Sen PC: Identification and characterization of a Mg2+-dependent and an independent Ca2+-ATPase in microsomal membranes of rat testis. Molec Cell Biochem 79: 161–169, 1988

    Google Scholar 

  28. Beeler TJ, Gable KS, Keffer JM: Characterization of the membrane bound Mg2+-ATPase of rat skeletal muscle. Biochim Biophys Acta 734:221–234, 1983

    Google Scholar 

  29. Malouf NN, Meissner G: Localization of a Mg2+- or Ca2+-activated (‘basic’) ATPase in skeletal muscle. Exp Cell Res 122:233–250, 1979

    Google Scholar 

  30. Tuana BS, Dhalla NS: Purification and characterization of a Ca2+/Mg2+ ecto-ATPase from rat heart sarcolemma. Mol Cell Biochem 81: 75–88, 1988

    Google Scholar 

  31. Iwasa Y, Iwasa T, Higashi K, Matsui K, Miyamoto E: Demonstration of a high affinity Ca2+-ATPase in rat liver plasma membranes. Biochem Biophys Res Commun 105: 488–494, 1982

    Google Scholar 

  32. Pierce GN, Dhalla NS: Sarcolemmal Na+K+-ATPase activity in diabetic rat heart. Am J Physiol 245: C241–C247, 1983

    Google Scholar 

  33. Caroni P, Carafoli E: The Ca2+-pumping ATPase of heart sarcolemma. Characterization, calmodulin dependence, and partial purification. J Biol Chem 256: 3263–3270, 1981

    Google Scholar 

  34. Klee CB, Vanaman TC: Calmodulin. Adv Protein Chem 35: 213–321, 1982

    Google Scholar 

  35. Gazzotti P, Flura M, Gloor M: The association of calmodulin with subcellular fractions isolated from rat liver. Biochem Biophys Res Commun 127: 358–365, 1985

    Google Scholar 

  36. Allen BG, Bridges M, Roufogalis BD, Katz S: Investigation of (Ca2+ + Mg2+)-ATPase phosphoprotein formation in erythrocyte membranes of patients with cystic fibrosis. Cell Calcium 7: 161–168, 1986

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahey, R., Katz, S. A non-specific Ca2+ (or Mg2+)-stimulated ATPase in rat heart sarcoplasmic reticulum. Mol Cell Biochem 96, 175–182 (1990). https://doi.org/10.1007/BF00420909

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00420909

Key words

Navigation