Skip to main content
Log in

The effect of interdiffusion on the change of refractive index of an AlGaAs/GaAs quantum well structure

  • Papers
  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The change of the refractive index due to quantum well (QW) disordering is calculated for light propagating normal to the Al0.3Ga0.7As/GaAs QW layers (i.e. along the QW growth direction). A hyperbolic function is used to model the above QW confinement profile after disordering, i.e. thermal interdiffusion of trivalent atoms across the well-barrier interfaces. The refractive index difference (Δn) is evaluated for two cases, where case I refers to the difference between a partially disordered QW and a more extensively disordered QW, while case II refers to the difference between an as-grown QW and a partially disordered QW. The results demonstrate that good photon confinement (large Δn > 0) can be achieved for both cases, where Δn increases with increasing QW width and decreases with annealing time for case I while for case II it increases with annealing time. In comparing the two cases, a shorter annealing time is required to achieve the same value of Δn if the case II structures are used. The change of refractive index obtained here demonstrates a larger value of Δn than that produced by the variation of the concentration of free carriers in the bulk material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. WERNER, E. KAPON, N. G. STOFFEL, E. COLAS, S. A. SCHWARTZ, C. L. SCHWARTZ and N. ANDREADAKIS, Appl. Phys. Lett. 55 (1989) 540.

    Google Scholar 

  2. F. JULIEN, P. S. SWANSON, M. A. EMANUEL, D. G. DEPPE, T. A. DeTEMPLE, J. J. COLEMAN and N. HOLONYAK Jr, Appl. Phys. Lett. 50 (1987) 866.

    Google Scholar 

  3. M. KUMAR, J. T. BOYD, H. E. JACKSON and B. L. WEISS, IEEE J. Quantum Electron. QE 28 (1992) 1678.

    Google Scholar 

  4. G. J. SONEK, J. M. BALLANTYNE, Y. J. CHEN, G. M. CARTER, S. W. BROWN, E. S. KOTELES and J. P. SALERNO, IEEE J. Quantum Electron. QE 22 (1986) 1015.

    Google Scholar 

  5. K. B. KAHEN and J. P. LEBURTON, Appl. Phys. Lett. 49 (1986) 734.

    Google Scholar 

  6. B. J. SEALY, Semicond. Sci. Technol. 3 (1988) 448.

    Google Scholar 

  7. T. E. SCHLESINGER and T. KUECH, Appl. Phys. Lett. 49 (1986) 519.

    Google Scholar 

  8. K. KASH, B. TELL, P. GRABBE, E. A. DOBISZ, H. G. GRAIGHEAD and M. C. TAMARGO, J. Appl. Phys. 63 (1988) 190.

    Google Scholar 

  9. C. VIEU, M. SCHNEIDER, R. PLANEL, H. LAUNOIS, B. DESCOUTS and Y. GAO, J. Appl. Phys. 70 (1991) 1433.

    Google Scholar 

  10. B. L. WEISS, I. BRADLEY, N. J. WHITEHEAD and J. S. ROBERTS, J. Appl. Phys. 71 (1992) 5715.

    Google Scholar 

  11. D. G. Deppe and N. Holonyak, Jr., J. Appl. Phys. 64 (1988) R93.

    Google Scholar 

  12. J. H. Marsh, S. I. Hansen, A. C. Bryce and R. M. DeLaRue, Opt. Quantum Electron. 23 (1991) S941.

    Google Scholar 

  13. A. T. MENEY, Superlatt. Microstruct. 11 (1992) 47.

    Google Scholar 

  14. E. KAPON, N. G. STOFFEL, E. A. DOBISZ and R. BHAT, Appl. Phys. Lett. 52 (1988) 351.

    Google Scholar 

  15. Y. SUZUKI, H. IWAMURA and O. MIKAMI, Appl. Phys. Lett. 56 (1990) 19.

    Google Scholar 

  16. O. WADA, A. FURUYA and M. MAKIUCHI, IEEE Photon. Technol. Lett. 1 (1989) 16.

    Google Scholar 

  17. K. IGA, F. KOYAMA and S. KINOSHITA, IEEE J. Quantum Electron. QW 24 (1988) 1845.

    Google Scholar 

  18. R. S. GEELS, S. W. CORZINE, J. W. SCOTT, D. B. YOUNG and L. A. COLDREN, IEEE Photon. Technol. Lett. 2 (1990) 234.

    Google Scholar 

  19. T. KADOKORO, H. OKAMOTO, Y. KOHAMA, T. KAWAKAMI and T. KUROKAWA, IEEE Photon. Technol. Lett. 4 (1992) 409.

    Google Scholar 

  20. M. Ghisoni, G. Parry, M. Pate, G. Hill and J. Roberts, Jpn J. Appl. Phys. 30 (1991) L1018.

    Google Scholar 

  21. K. K. LAW, J. L. MERZ and L. A. COLDREN, J. Appl. Phys. 72 (1992) 855.

    Google Scholar 

  22. E. H. LI and B. L. WEISS, J. Appl. Phys. 70 (1991) 1054.

    Google Scholar 

  23. E. H. LI and B. L. WEISS, IEEE J. Quantum Electron. 29 (1993) 311.

    Google Scholar 

  24. J. D. RALSTON, S. O'BRIEN, G. W. WICKS and L. F. EASTMAN, Appl. Phys. Lett. 52 (1988) 1511.

    Google Scholar 

  25. E. H. LI, B. L. WEISS and K. S. CHAN, Phys. Rev. B 46 (1992) 15181.

    Google Scholar 

  26. K. P. HOMEWOOD and D. J. DUNSTAN, J. Appl. Phys. 69 (1991) 7581.

    Google Scholar 

  27. K. B. KAHEN and J. P. LEBURTON, Phys. Rev. 33 (1986) 5465.

    Google Scholar 

  28. F. BASSANI and G. P. PARRAVICINI, in Electronic States and Optical Transitions in Solids (Pergamon Press, Oxford, 1975) p. 154.

    Google Scholar 

  29. S. L. CHUANG and D. AHN, J. Appl. Phys. 65 (1989) 2822.

    Google Scholar 

  30. D. AHN and S. L. CHUANG, J. Appl. Phys. 64 (1988) 440.

    Google Scholar 

  31. M. ASADA, IEEE J. Quantum Electron. QE 25 (1989) 2019.

    Google Scholar 

  32. R. A. SMITH, in Wave Mechanics of Crystalline Solids (Academic Press, New York, 1961) p. 240.

    Google Scholar 

  33. H. C. CASEY Jr. and M. B. PANISH, in Heterostructure Lasers, Part A (Academic Press, New York, 1978) p. 146.

    Google Scholar 

  34. R. H. YAN, S. W. CORZINE, L. A. COLDREN and I. SUEMUNE, IEEE J. Quantum Electron. QE 26 (1990) 213.

    Google Scholar 

  35. S. C. HONG, G. P. KOTHIYAL, N. DEBBAR, P. BATTACHARYA and J. SINGH, Phys. Rev. B 37 (1988) 878.

    Google Scholar 

  36. F. STERN, Solid St. Phys. 15 (1963) 300.

    Google Scholar 

  37. K. B. KAHEN and J. P. LEBURTON, Phys. Rev. B 32 (1985) 5177.

    Google Scholar 

  38. Y. C. CHANG, J. CHEUNG, A. CHIOU and M. KHOSHNEVISAN, J. Appl. Phys. 68 (1990) 4233.

    Google Scholar 

  39. R. PIESSENS, M.VANROY-BRANDERS and I. MERTENS, Angewandte Informatik, 18 (1976) 31.

    Google Scholar 

  40. M. A. MENTZER, R. G. HUNSPERGER, S. SRIRAM, J. BARTKO, M. S. WLODAWSKI, J. M. ZAVADA and H. A. FENKINSON, Opt. Eng. 24 (1985) 225.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, E.H., Weiss, B.L. & Micallef, J. The effect of interdiffusion on the change of refractive index of an AlGaAs/GaAs quantum well structure. Opt Quant Electron 25, 399–408 (1993). https://doi.org/10.1007/BF00420581

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00420581

Keywords

Navigation