Skip to main content
Log in

Diffusion Blurring of GaAs Quantum Wells Grown at Low Temperature

  • SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The processes of the diffusion blurring of a periodic system of GaAs quantum wells separated by AlGaAs barriers are studied by photoluminescence spectroscopy. The system is grown by molecular-beam epitaxy at a low temperature (200°C) and additionally doped with Sb and P isovalent impurities. Postgrowth annealing at the temperature 750°C for 30 min induces an increase in the energy corresponding to the photoluminescence peak of the e1–hh1 exciton state in quantum wells because of blurring of the epitaxial GaAs/AlGaAs interfaces due to enhanced Al–Ga interdiffusion in the cation sublattice. For the Al concentration profile defined by linear diffusion into quantum wells, the Schrödinger equation for electrons and holes is solved. It is found that the experimentally observed energy position of the photoluminescence peak corresponds to the Al–Ga interdiffusion length 3.4 nm and to the effective diffusion coefficient 6.3 × 10–17 cm2 s–1 at the temperature 750°C. This value is found to be close to the corresponding value for GaAs quantum wells grown at low temperatures without additional doping with Sb and P impurities. From the results obtained in the study, it is possible to conclude that enhanced As–Sb and As–P interdiffusion in the anion sublattice only slightly influences the processes of Al–Ga interdiffusion in the cation sublattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. I. Lahiri, D. D. Nolte, M. R. Melloch, J. M. Woodall, and W. Walukiewicz, Appl. Phys. Lett. 69, 239 (1996).

    Article  ADS  Google Scholar 

  2. R. Guersen, I. Lahiri, M. Dinu, M. R. Melloch, and D. D. Nolte, Phys. Rev. B 60, 10926 (1999).

    Article  ADS  Google Scholar 

  3. I. Lahiri, D. D. Nolte, J. C. P. Chang, J. M. Woodall, and M. R. Melloch, Appl. Phys. Lett. 67, 1244 (1995).

    Article  ADS  Google Scholar 

  4. A. A. Pastor, U. V. Prokhorova, P. Yu. Serdobintsev, V. V. Chaldyshev, and M. A. Yagovkina, Semiconductors 47, 1137 (2013).

    Article  ADS  Google Scholar 

  5. I. Lahiri, D. D. Nolte, E. S. Harmon, M. R. Melloch, and J. M. Woodall, Appl. Phys. Lett. 66, 2519 (1995).

    Article  ADS  Google Scholar 

  6. D. D. Nolte, J. Appl. Phys. 85, 6259 (1999).

    Article  ADS  Google Scholar 

  7. D. G. Deppe and N. Holonyak, J. Appl. Phys. 64, R93 (1988).

    Article  ADS  Google Scholar 

  8. N. A. Bert, V. V. Chaldyshev, Yu. G. Musikhin, A. A. Suvorova, V. V. Preobrazhenskii, M. A. Putyato, B. R. Semyagin, and P. Werner, Appl. Phys. Lett. 74, 1442 (1999).

    Article  ADS  Google Scholar 

  9. N. A. Bert, Yu. G. Musikhin, V. V. Preobrazhenskii, M. A. Putyato, B. R. Semyagin, A. A. Suvorova, V. V. Chaldyshev, and P. Werner, Semiconductors 32, 683 (1998).

    Article  ADS  Google Scholar 

  10. V. V. Chaldyshev, N. A. Bert, Yu. G. Musikhin, A. A. Suvorova, V. V. Preobrazhenskii, M. A. Putyato, B. R. Semyagin, P. Werner, and U. Gösele, Appl. Phys. Lett. 79, 1294 (2001).

    Article  ADS  Google Scholar 

  11. H. Bender, W. Coene, and A. F. D. Jong, Ultramicroscopy 21, 373 (1987).

    Article  Google Scholar 

  12. D. B. McWhan, R. M. Fleming, A. C. Gossard, W. Wiegmann, and R. A. Logan, J. Appl. Phys. 51, 357 (1980).

    Article  ADS  Google Scholar 

  13. D. A. Collins, R. M. Feenstra, D. Z. Y. Ting, M. W. Wang, and T. C. McGill, Phys. Rev. Lett. 72, 2749 (1994).

    Article  ADS  Google Scholar 

  14. J. Singh and K. K. Bajaj, Appl. Phys. Lett. 47, 594 (1985).

    Article  ADS  Google Scholar 

  15. V. V. Chaldyshev, Mater. Sci. Eng. B 88, 195 (2002).

    Article  Google Scholar 

  16. T. Tan, U. Gösele, and S. Yu, Crit. Rev. Solid State Mater. Sci. 17, 47 (1991).

    Article  ADS  Google Scholar 

  17. M. Schultz, U. Egger, R. Scholz, O. Breitenstein, U. Gösele, and T. Y. Tan, J. Appl. Phys. 83, 5295 (1998).

    Article  ADS  Google Scholar 

  18. S. Adachi, J. Appl. Phys. 58, R1 (1985).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was supported by the Presidium of the Russian Academy of Sciences, the program No. 7 “Topical Problems of Photonics; Probing of Inhomogeneous Media and Materials”, and by the Russian Foundation for Basic Research, project no. 17-02-01168.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. I. Ushanov or V. V. Chaldyshev.

Additional information

Translated by E. Smorgonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ushanov, V.I., Chaldyshev, V.V., Preobrazhenskii, V.V. et al. Diffusion Blurring of GaAs Quantum Wells Grown at Low Temperature. Semiconductors 52, 1704–1707 (2018). https://doi.org/10.1134/S1063782618130213

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618130213

Navigation