Skip to main content
Log in

Chiral interaction in protein structures

  • Published:
Molecular Engineering

Abstract

A new mode of interaction, to be termed “chiral interaction”, is proposed between chiral molecules such as proteins and polar solvents (H2O). Such a mode of interaction is well-recognized for macroscopic chiral devices, such as windmills or electric cells, and various media, such as wind or electrolyte. This mode of interaction requires several structural ingredients, all possessed by proteins, and its source is in ionic motion in the solvent. Such an interaction exists only for chiral objects or molecules and therefore possesses several peculiar and uncommon features, which may be of special biological significance. From a thermodynamical viewpoint this phenomenon is non-ergodic and time-irreversible, and therefore does not obey the principle of detailed balance. The energy content of this interaction is rather small and therefore it is to be regarded as a subthermal organization. Chiral interaction appears in the form of an intrinsic flow of perturbation or currents throughout the molecule and hence it is not easily observable. Two experiments are proposed for its observation. One is direct and the other is based on an assumption that couples chiral interaction with enzymatic activity. A model is proposed that links this interaction with the natural selection of the L-enantiomer of amino acids via the magnetic field of the earth. Several structural and other properties may obtain biological significance via the concept of chiral interaction. It is conjectured that chiral interaction may play a significant role in the control of protein activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. This is so except for glycine, which is achiral.

  2. L.Pasteur: Ann. Chim. 24, 457 (1848).

    Google Scholar 

  3. G.Gilat: Chem. Phys. Letters 121, 9 (1985).

    Google Scholar 

  4. G.Gilat and L. S.Schulman. Chem. Phys. Letters 121, 13 (1985).

    Google Scholar 

  5. G.Gilat: Chem. Phys. Letters 125, 129 (1986).

    Google Scholar 

  6. G.Gilat: Chem. Phys. Letters 137, 492 (1987).

    Google Scholar 

  7. L. D. Barron: Molecular Light Scattering and Optical Activity, Cambridge University Press (1982).

  8. A.Wollmer: in Biophysics, eds. W.Hoppe, W.Lohmann, H.Markl, and H.Ziegler, Springer Verlag, Berlin (1983), p. 144.

    Google Scholar 

  9. J.Applequist: Am. Scientist 75, 59 (1987).

    Google Scholar 

  10. K.Blum and D.Thompson: J. Phys. B22, 1823 (1989).

    Google Scholar 

  11. A. S.Davydov: Biology and Quantum Mechanics, Pergamon Press, Oxford (1982).

    Google Scholar 

  12. It may be necessary to assume a participation of H2O in this bond where NH +3 +COO=H2O+NH++CO and H2O is attached to the dipole moment via H-bonding. This arrangement relaxes the bond angles along the loop.

  13. P.Lazzaretti and R.Zanasi: J. Phys. Chem. 75, 5017 (1981).

    Google Scholar 

  14. For more details about the steric structure of globular proteins, see R. Huber and W. S. Bennett Jr.: in Biophysics, eds. W. Hoppe, W. Lohmann, H. Markl and H. Ziegler, Springer-Verlag (1983), p. 372. Globular proteins contain also β-sheets which are also capable of generating chiral currents in solvents.

  15. H.Haken: Synergetics — an Introduction, Springer Verlag, Berlin (1977).

    Google Scholar 

  16. M.Gupta, S. K.Saxena, J. P.Shukla, and M. C.Saxena: Ind. J.P.S. Appl. Phys. 20, 491 (1982).

    Google Scholar 

  17. P. G.deGennes: Compt. Rendu. 270B, 891 (1970).

    Google Scholar 

  18. K.Huang: Statistical Mechanics, Wiley, New York (1963), p. 203.

    Google Scholar 

  19. R. G.Palmer: Adv. Phys. 31, 669 (1982).

    Google Scholar 

  20. R. P.Feynman: Statistical Mechanics, Benjamin, New York (1972).

    Google Scholar 

  21. L. E.Reichl: A Modern Course in Statistical Mechanics, University of Texas Press, Austin (1980), p. 468.

    Google Scholar 

  22. L. A.Blumenfeld: Biofizika 17, 954 (1972).

    Google Scholar 

  23. L. A. Blumenfeld: Physics of Bioenergetic Processes, Springer-Verlag (1983), Chapter 4, 69.

  24. W.Rhodes and R. C.Dougherty: J. Am. Chem. Soc. 100, 6247 (1978).

    Google Scholar 

  25. C. A.Meads and A.Moscowitz: J. Am. Chem. Soc. 102, 7301 (1980).

    Google Scholar 

  26. L. D.Barron: Chem. Soc. Rev. 15, 189 (1986) and references therein.

    Google Scholar 

  27. L. D.Barron: Chem. Phys. Letters 135, 1 (1987).

    Google Scholar 

  28. G.Gilat: Chem. Physics 140, 195 (1990).

    Google Scholar 

  29. G. Gilat: J. Phys. A A22, L545 (1989); ibid. Found. Phys. Letters 3, 189 (1990).

  30. G. Gilat: submitted for publication.

  31. H.Tschesche: in Biophysics, eds. W.Hoppe, W.Lohmann, H.Markl, and H.Ziegler, Springer Verlag, Berlin (1983), p. 37.

    Google Scholar 

  32. M.Pomerantz, F. H.Docol, and A.Segmüller: Phys. Rev. Lett. 40, 2467 (1978).

    Google Scholar 

  33. G. L. Gaines Jr.: Insoluble Monolayers at Liquid-Gas Interfaces, J. Wiley & Sons (1966), p. 125 and references therein.

  34. A.Peres: J. Am. Chem. Soc. 102, 7389 (1980).

    Google Scholar 

  35. D. K.Kondepudi and G. W.Nelson: Phys. Rev. Lett. 50, 1023 (1983).

    Google Scholar 

  36. D. K.Kondepudi and G. W.Nelson: Phys. Letters 106A, 203 (1984).

    Google Scholar 

  37. K. A.Kvenvolden, J.Lawless, and C.Ponnamperuma: Proc. Natl. Acad. Sci. USA 68, 486 (1971).

    Google Scholar 

  38. V. I.Goldanskii and V. V.Kuzmin: Usp. Fiz. Nauk 157, 3 (1989) (Trans. Sov. Phys. Usp. 32, 1 (1989)).

    Google Scholar 

  39. A.Zaks and A. M.Klibanov: Science 122, 1249 (1984).

    Google Scholar 

  40. A.Zaks and A. M.Klibanov: Proc. Natl. Acad. Sci. USA 82, 3192 (1985).

    Google Scholar 

  41. The author is thankful to Dr. M. Sinnott for proposing this procedure.

  42. M. T.RecordJr., C. F.Anderson, P.Mills, M.Mossing, and Jung-HueRoe: Adv. Biophys. 20, 109 (1985).

    Google Scholar 

  43. M. T.RecordJr., C. F.Anderson, and T. M.Lohman: Q. Rev. Biophys. 11, 103 (1978).

    Google Scholar 

  44. E.Schrödinger: What is Life?, Cambridge Univ. Press, Cambridge (1944).

    Google Scholar 

  45. P. C. W. Davies: The Physics of Time Asymmetry, Surrey University Press (1974).

  46. J. A.MacCammon: Rep. Prog. Phys. 47, 1 (1984).

    Google Scholar 

  47. M.Karplus and J. A.McCammon: Sci. Amer. 254(4), 42 (1986).

    Google Scholar 

  48. H.Frauenfelder and R. D.Young: ‘Comments’, Mol. Cell. Biophys. 3, 347 (1986).

    Google Scholar 

  49. H. Frauenfelder: in Structure and Dynamics of Nucleic Acids, Proteins and Membranes, eds. E. Clementi and S. Chin, Plenum Press (1986), p. 169.

  50. L.Salem, X.Chapinstat, G.Segal, P. C.Hibberty, C.Minot, C.Laforetier and P.Sautet: J. Am. Chem. Soc. 109, 2887 (1987).

    Google Scholar 

  51. M.Quack: Chem. Phys. Letters 132, 147 (1986).

    Google Scholar 

  52. V. A.Kizel, Sov. Phys. Usp. 23, 277 (1980).

    Google Scholar 

  53. A.Laforgue, Topics in Molecular Organization and Engineering, Kluwer, Dordrecht, (1989) Vol. 4, p. 53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilat, G. Chiral interaction in protein structures. Mol Eng 1, 161–178 (1991). https://doi.org/10.1007/BF00420052

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00420052

Key words

Navigation