Skip to main content
Log in

Multiple elements regulate expression of the cell cycle-regulated thymidylate synthase gene of Saccharomyces cerevisiae

  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Expression of the thymidylate synthase gene (TMPI) of Saccharomyces cerevisiae increases during the late G1 phase of the cell cycle. Using a series of gene fusions, which have placed the Escherichia coli lacZ gene under transcriptional and translational control of different portions of the TMPI gene, we have demonstrated the existence of three different regions which are important for expression. One of these regions, which was localized to within 270 base pairs of the translation start codon, is involved in the periodic expression of TMPI transcript. A second region, the deletion of which resulted in reduced levels of TMPI expression, is at least partially encoded by DNA sequences between 270 and 377 base pairs upstream of the translation start codon. A third region, located within the N-terminal 112 codons of the TMPI gene, apparently encodes information involved in a post-translational control mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barclay BJ, Little JG (1978) Mol Gen Genet 160:33–40

    Google Scholar 

  • Barclay BJ, Kunz BA, Little JG, Haynes RH (1982) Can J Biochem 60:172–194

    Google Scholar 

  • Barclay BJ, Little JG (1981) Mol Gen Genet 181:279–281

    Google Scholar 

  • Birnboim HC, Doly J (1979) Nucleic Acids Res 7:1513–1523

    Google Scholar 

  • Bisson L, Thorner J (1977) J Bacteriol 132:44–50

    Google Scholar 

  • Bisson L, Thorner J (1982) Genetics 102:341–359

    Google Scholar 

  • Brendel M, Langjahr UG (1974) Mol Gen Genet 131:351–358

    Google Scholar 

  • Carlson M, Botstein D (1982) Cell 28:145–154

    Google Scholar 

  • Casadaban MJ, Chou J, Cohen SN (1980) J Bacteriol 143:971–980

    Google Scholar 

  • Casadaban MJ, Martinez-Arias A, Shapira SK, Chou J (1983) Methods Enzymol 100:293–308

    Google Scholar 

  • Greenwood MT, Calmels EM, Storms RK (1986) J Bacteriol 168:1336–1342

    Google Scholar 

  • Grenson M (1969) Eur J Biochem 11:249–260

    Google Scholar 

  • Grivell AR, Jackson JF (1968) J Gen Microbiol 54:307–317

    Google Scholar 

  • Guarente G (1983) Methods Enzymol 101:181–191

    Google Scholar 

  • Hereford LM, Osley MA, Ludwig JR, McLaughlin CS (1981) Cell 24:367–375

    Google Scholar 

  • Hryniuk WM, Bertino JR (1971) Annu NY Acad Sci 186:330–342

    Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) J Bacteriol 153:163–168

    Google Scholar 

  • Kunz BA (1982) Environ Mutagen 4:695–725

    Google Scholar 

  • Koyama H, Ayusawa D, Seno T (1982) Mutat Res 105:433–438

    Google Scholar 

  • Little JG, Haynes RH (1979) Mol Gen Genet 168:141–151

    Google Scholar 

  • Mandel M, Higa A (1970) J Mol Biol 53:159–162

    Google Scholar 

  • Maniatis T, Jeffrey A, Kleid DG (1975) Proc Natl Acad Sci USA 72:1184–1188

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Martinez-Arias AE, Casadaban MJ (1983) Mol Cell Biol 3:580–586

    Google Scholar 

  • McMaster GK, Carmichael GG (1977) Proc Natl Acad Sci USA 74:4835–4838

    Google Scholar 

  • McNeil JB, Storms RK, Friesen JD (1980) Curr Genet 2:17–25

    Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Nasmyth K (1985a) Cell 42:213–223

    Google Scholar 

  • Nasmyth K (1985b) Cell 42:225–235

    Google Scholar 

  • O'Donovan GA, Neuhard J (1970) Bacteriol Rev 34:278–343

    Google Scholar 

  • Osley MA, Gould J, King S, Kane M, Hereford L (1986) Cell 45:537–544

    Google Scholar 

  • Osley MA, Hereford L (1982) Proc Natl Acad Sci USA 79:7689–7693

    Google Scholar 

  • Rose M, Botstein D (1983) Methods Enzymol 101:167–180

    Google Scholar 

  • Russel DW, Jensen R, Zoller MJ, Burke J, Errede B, Smith M, Herskowitz I (1986) Mol Cell Biol 6:4281–4294

    Google Scholar 

  • Southern EM (1975) J Mol Biol 98:503–517

    Google Scholar 

  • Storms RK, McNeil JB, Khanderkar PS, An G, Parker J, Friesen JD (1979) J Bacteriol 140:73–82

    Google Scholar 

  • Storms RK, Ord RW, Greenwood MT, Mirdimadi B, Chu FK, Belfort M (1984) Mol Cell Biol 4:2858–2864

    Google Scholar 

  • Struhl K (1981) J Mol Biol 152:569–575

    Google Scholar 

  • Taylor GR, Barclay BJ, Storms RK, Friesen JD, Haynes RH (1982) Mol Cell Biol 2:437–442

    Google Scholar 

  • Taylor GR, Lagosky PA, Storms RK, Haynes RH (1987) J Biol Chem 262:5298–5307

    Google Scholar 

  • Thomas PS (1983) Methods Enzymol 100:255–266

    Google Scholar 

  • Toper R, Fath WW, Brendel M (1981) Mol Gen Genet 182:60–64

    Google Scholar 

  • White JHM, Green SR, Barker DG, Dumas LB, Johnston LH (1987) Exp Cell Res 171:223–231

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ord, R.W., McIntosh, E.M., Lee, L. et al. Multiple elements regulate expression of the cell cycle-regulated thymidylate synthase gene of Saccharomyces cerevisiae . Curr Genet 14, 363–373 (1988). https://doi.org/10.1007/BF00419994

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00419994

Key words

Navigation