Skip to main content
Log in

Stability of a nonorthogonal stagnation flow to three-dimensional disturbances

  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

A similarity solution for a low Mach number nonorthogonal flow impinging on a hot or cold plate is presented. For the constant-density case, it is known that the stagnation point shifts in the direction of the incoming flow and that this shift increases as the angle of attack decreases. When the effects of density variations are included, a critical plate temperature exists; above this temperature the stagnation point shifts away from the incoming stream as the angle is decreased. This flow field is believed to have applications to the reattachment zone of certain separated flows or to a lifting body at a high angle of attack. Finally, we examine the stability of this nonorthogonal flow to self-similar, three-dimensional disturbances. Stability characteristics of the flow are given as a function of the parameters of this study: ratio of the plate temperature to that of the outer potential flow and angle of attack. In particular, it is shown that the angle of attack can be scaled out by a suitable definition of an equivalent wave number and temporal growth rate, and the stability problem for the nonorthogonal case is identical to the stability problem for the orthogonal case. By use of this scaling, it can be shown that decreasing the angle of attack decreases the wave number and the magnitude of the temporal decay rate, thus making nonlinear effects important. For small wave numbers, it is shown that cooling the plate decreases the temporal decay of the least-stable mode, while heating the plate has the opposite effect. For moderate to large wave numbers, density variations have little effect except that there exists a range of cool plate temperatures for which these disturbances are extremely stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brattkus, K., and Davis, S.H. (1991) Quart. J. Mech. Appl. Math., 44, 135.

    Google Scholar 

  • Dorrepaal, J.M. (1986) An Exact Solution of the Navier-Stokes Equation which Describe Nonorthogonal Stagnation-Point Flow in Two Dimensions. J. Fluid Mech., 163, 141–147.

    Google Scholar 

  • Hall, P., and Malik, M.R. (1986) On the Instability of a Three-Dimensional Attachment-Line Boundary Layer: Weakly Nonlinear Theory and a Numerical Approach. J. Fluid Mech., 163, 257–282.

    Google Scholar 

  • Hall, P., Malik, M.R., and Poll, D.I.A. (1984) On the Stability of an Infinite Swept Attachment Line Boundary Layer. Proc. Roy. Soc. London Ser. A, 395, 229–245.

    Google Scholar 

  • Lyell, M.J. (1990) A Representation for the Temperature Field Near the Stagnation Region in Oblique Stagnation Flow. Phys. Fluids A, 2(3), 456–458.

    Google Scholar 

  • Lyell, M.J., and Huerre, P. (1985) Linear and Nonlinear Stability of Plane Stagnation Flow. J. Fluid Mech., 161, 295–312.

    Google Scholar 

  • Spalart, P.R. (1989) Direct Numerical Study of Leading-Edge Contamination. AGARD Conf. Proc., No. 438, 5.1–5.13.

  • Stuart, J.T. (1959) The Viscous Flow Near a Stagnation Point when the External Flow has Uniform Vorticity. J. Aero/Space Sci., 26, 124–125.

    Google Scholar 

  • Tamada, K. (1979) Two-Dimensional Stagnation-Point Flow Impinging Obliquely on a Plane Wall. J. Phys. Soc. Japan, 46, 310–311.

    Google Scholar 

  • Wilson, S.D.R. and Gladwell, I. (1978) The Stability of a Two-Dimensional Stagnation Flow to Three-Dimensional Disturbances. J. Fluid Mech., 84, 517–527.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Philip Hall

This work was supported by the National Aeronautics and Space Administration under NASA Contract NAS1-18605 while the authors were in residence at the Institute for Compute Applications in Science and Engineering, NASA Langley Research Center, Hampton, VA 23665, U.S.A.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lasseigne, D.G., Jackson, T.L. Stability of a nonorthogonal stagnation flow to three-dimensional disturbances. Theoret. Comput. Fluid Dynamics 3, 207–218 (1992). https://doi.org/10.1007/BF00417913

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00417913

Keywords

Navigation