Skip to main content
Log in

Metabolism of the obligatory aerobic yeast Rhodotorula gracilis

I. Changes in metabolite concentrations following D-glucose and D-xylose addition to the cell suspension

  • Published:
Archiv für Mikrobiologie Aims and scope Submit manuscript

Summary

The transients in metabolite concentrations of the yeast Rhodotorula gracilis have been analyzed following the addition of D-glucose and D-xylose. In addition, the effect of varied metabolite concentrations on pyruvate kinase (important for the switch: glycolysis vs. gluconeogenesis) were tested. These results when seen together with the already known enzyme equipment of the yeast, lead to the following conclusions:

  1. 1.

    The pentose phosphate cycle is the main pathway of D-glucose metabolism; glucose molecules are broken down not only oxidatively, but also through the reversed transaldolase and transketolase reactions, eventually forming xylulose-5-P.

  2. 2.

    Xylulose-5-P is split to a C2-unit and glyceraldehyde-3-P. The former compound (presumably glycollate) is oxidized to glyoxylate and further metabolized in the glyoxylate shunt of the tricarboxylic acid cycle, the latter compound is transformed to acetyl-CoA through the glycolytic reactions.

  3. 3.

    Addition of D-xylose stimulates endogenous metabolism. It is postulated that under these conditions fragments of an endogenous substrate (predominantly cell lipids) are transformed to glucose-6-P in reactions combined from the lower part of the glycolytic pathway and the non-oxidative part of the pentose phosphate shunt.

  4. 4.

    Crossover plots indicate the loci of glycolytic regulation between triosephosphates and phosphoglyceric acids, between phosphoglyceric acids and pyruvate (or PEP) as well as between PEP (or pyruvate) and dicarboxylic acids of the TCA cycle (malate).

  5. 5.

    A scheme of metabolic pathways in the yeast is postulated and discussed. For comparison, the metabolite concentrations in Saccharomyces carlsbergensis, a yeast with complete glycolysis, were also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Betz, A., Chance, B.: Influence of inhibitors and temperature on the oscillation of reduced pyridine nucleotides in yeast cells. Arch. Biochem. 109, 579–584 (1965).

    Google Scholar 

  • —, Höfer, M.: Stoffwechselumschaltungen in der obligat aeroben Hefe Rhodotorula gracilis bei Fütterung mit verschiedenen Monosacchariden. Hoppe-Seylers Z. physiol. Chem. 349, 1240 (1968).

    Google Scholar 

  • Brady, R. J., Chambliss, G. H.: The lack of phosphofructokinase activity in several species of Rhodotorula. Biochem. biophys. Res. Commun. 29, 898–903 (1967).

    Google Scholar 

  • Bücher, T., Pfleiderer, G.: Pyruvate kinase from muscle. In: Methods in Enzymology, Vol. I, pp. 435–440 (ed. by S. P. Colowick and N. O. Kaplan). New York: Academic Press 1955.

    Google Scholar 

  • Chance, B., Williams, G. R., Holmes, W. F., Higgins, J.: Respiratory enzymes in oxidative phosphorylation. V. A mechanism for oxidative phosphorylation. J. biol. Chem. 217, 439–451 (1955).

    Google Scholar 

  • Estabrook, R. W., Maitra, P. K.: A fluorometric method for the quantitative microanalysis of adenine and pyridine nucleotides. Analyt. Biochem. 3, 369–382 (1962).

    Google Scholar 

  • Gancedo, J. M., Gancedo, C., Sols, A.: Regulation of the concentration or activity of pyruvate kinase in yeast and its relationship to gluconeogenesis. Biochem. J. 102, 23c-25c (1967).

    Google Scholar 

  • Hess, B., Haeckel, R., Brand, K.: FDP-activation of yeast pyruvate kinase. Biochem. biophys. Res. Commun. 24, 824–831 (1966).

    Google Scholar 

  • Hohorst, H. J.: L-(-)-Malat. Bestimmung mit malatdehydrogenase und DPN. In: Methoden der enzymatischen Analyse, pp. 328–332 (ed. by H. U. Bergmeyer). Weinheim: Verlag Chemie 1962.

    Google Scholar 

  • Horecker, B. L.: Pentose metabolism in bacteria. New York-London: John Wiley & Sons, Inc. 1962.

    Google Scholar 

  • Höfer, M.: Estimation of pathways of glucose catabolism in Rhodotorula gracilis. Folia mikrobiol. (Praha) 13, 373–378 (1968).

    Google Scholar 

  • Höfer, M., Becker, J.-U., Betz, A.: Metabolism of the obligatory aerobic yeast Rhodotorula gracilis. II. Pyruvate kinase and phosphoenolpyruvate carboxykinase activities at various metabolic states. Arch. Mikrobiol. (following paper).

  • ——, Brand, K., Deckner, K., Betz, A.: A study of the enzyme equipment of the yeast Rhodotorula gracilis. FEBS Lett. 3, 322–324 (1969a).

    Google Scholar 

  • Höfer, M., Brand, K., Deckner, K., Becker, J.-U.: The pentose phosphate pathway of the yeast Rhodotorula gracilis. Europ. J. Biochem. (submitted).

  • —, Kotyk, A., Rihova, L., Janda, S., Betz, A.: Transport und Stoffwechsel von D-Xylose in Rhodotorula gracilis. Hoppe-Seylers Z. physiol. Chem. 350, 6 (1969b).

    Google Scholar 

  • Kleinzeller, A., Slechta, L.: Metabolismus glukosy v kvasince Rhodotorula gracilis I. Vliv enzymatickych inhibitoru. Chem. Listy 48, 602–606 (1954).

    Google Scholar 

  • Kotyk, A., Höfer, M.: Uphill transport of sugars in the yeast Rhodotorula gracilis. Biochim. biophys. Acta (Amst.) 102, 410–422 (1965).

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurements with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951).

    Google Scholar 

  • Maitra, P. K., Estabrook, R. W.: A fluorometric method for the enzyme determination of glycolytic intermediates. Analyt. Biochem. 7, 472–484 (1964).

    Google Scholar 

  • Martin, J. B., Doty, D. M.: Determination of inorganic phosphate. Modification of isobutyl alcohol procedure. Analyt. Chem. 21, 965–967 (1949).

    Google Scholar 

  • Medrano, L., Ruiz-Amil, M., Losada, M.: Effect of glucose on pyruvate utilization by Rhodotorula glutinis. Arch. Mikrobiol. 66, 239–249 (1969).

    Google Scholar 

  • Plate, C. A., Joshi, V. C., Sedgwick, B., Wakil, S. J.: Studies on the mechanism of fatty acid synthesis. XXI, J. biol. Chem. 243, 5439–5445 (1968).

    Google Scholar 

  • Racker, E., Schroeder, E. A. R.: The reductive pentose phosphate cycle. II. Arch. Biochem 74, 326–344 (1958).

    Google Scholar 

  • Seubert, W., Henning, H. V., Schoner, W., L'age, M.: Effect of cortisol on the levels of metabolites and enzymes controling glucose production from pyruvate. In: Advances in enzyme regulation, Vol. 6, pp. 153–188 (ed. G. Weber). Oxford: Pergamon Press Ltd. 1968.

    Google Scholar 

  • Siebert, G.: Citrat und Isocitrat. In: Methoden der enzymatischen Analyse, S. 318 bis 323 (ed. H. U. Bergmeyer). Weinheim: Verlag Chemie 1962.

    Google Scholar 

  • Taylor, C. B., Bailey, E.: Activation of liver pyruvate kinase by fructose 1,6-diphosphate. Biochem. J. 102, 32c-33c (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Höfer, M., Betz, A. & Becker, JU. Metabolism of the obligatory aerobic yeast Rhodotorula gracilis . Archiv. Mikrobiol. 71, 99–110 (1970). https://doi.org/10.1007/BF00417735

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00417735

Keywords

Navigation