Skip to main content
Log in

A few distinct ‘molecular sandwiches’ are basis for structural and functional similarities of subspecies of interferon α and of families of growth-promoting hormones

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

‘Molecular sandwiches’ composed of two aromatic amino acids separated by a hydrophilic one were found on eleven subspecies of human interferon α, on murine interferon α2, and human interferon β1. In addition, another type of the sandwiches was found on several species of interferon. This confirms and extends the observations concerning the similarities between some interferons and several classical hormones. Furthermore, we are presenting evidence that a distinct type of the ‘molecular sandwiches’: Tyr-Cys...Cys and/or Cys...Cys-Cys...Cys, that participate in formation of disulfide bonds, is a characteristic marker of most, if not all of the growth-promoting hormones including growth factors. The ‘sandwiches’ appear to be important for receptor binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Inglot, A. D., 1981–82. Texas Rep. Biol. Med. 41: 402–410.

    Google Scholar 

  2. Inglot, A. D., 1983. Arch. Virol. 76: 1–13.

    Google Scholar 

  3. Inglot, A. D., 1984. In: The Physiology and Pathology of Interferon System (Borecký, L. and Lackovič, V. eds.) Contributions to Oncology vol. 20, Karger, Basel.

    Google Scholar 

  4. Roth, J., Le Roith, D., Shiloach, J., Rozenzweig, J. L., Lesniak, M. A. & Havrankova, J., 1982. N. Engl. J. Med. 306: 523–527.

    Google Scholar 

  5. Sabesan, M. R. & Harper, E. T., 1980. J. Theor. Biol. 83: 457–467.

    Google Scholar 

  6. Root-Bernstein, R. S., 1984. FEBS Lett. 168: 208–212.

    Google Scholar 

  7. Pestka, S., 1983. Arch. Biochem. Biophys. 221: 1–37.

    Google Scholar 

  8. Rubinstein, M., 1982. Biochim. Biophys. Acta 695: 5–16.

    Google Scholar 

  9. Gren, E., Berzin, V., Jansone, I., Tsimanis, A., Vishnevsky, Y. & Apsalons, V., 1984. J. Interferon Res. 4: 609–617.

    Google Scholar 

  10. Shaw, G. D., Boll, W., Taira, H., Mantei, N., Lengyel, P. & Weissmann, C., 1983. Nucl. Acids Res. 11: 555–573.

    Google Scholar 

  11. Teniguchi, T., Mantei, N., Schwarzstein, M., Nagata, S., Muramatsu, M. & Weissmann, C., 1980. Nature 285: 547–549.

    Google Scholar 

  12. Wetzel, R., Perry, L. J., Estell, D. A., Lin, N., Levine, H. L., Slinker, B., Fields, F., Ross, M. J. & Shively, J., 1981. J. Interferon Res. 1: 381–390.

    Google Scholar 

  13. Higashi, Y., Sokawa, Y., Watanabe, Y., Kawade, Y., Ohno, S., Takaoka, C. & Taniguchi, T., 1983. J. Biol. Chem. 258: 9522–9529.

    Google Scholar 

  14. Gray, P. W., Leung, D. W., Pennica, D., Yelverton, E., Najarian, R., Simonsen, C. C., Derynck, R., Sherwood, P. J. Wallace, D. M., Berger, S. L., Levinson, A. D. & Goeddel, D. V., 1982. Nature 295: 503–508.

    Google Scholar 

  15. Arakawa, T., Ferguson, B., Hsu, A., Richards, R., Stabinsky, Y., Fish, E. N. & Alton, K., 1984. Antiviral Res. 1 (Abs.): 147.

    Google Scholar 

  16. Rinderknecht, E. & Burton, L. E., 1984. Antiviral Res. 1 (Abs.): 7.

    Google Scholar 

  17. Gray, P. W. & Goeddel, D. V., 1983. Proc. Natl. Acad. Sci. USA 80: 5842–5846.

    Google Scholar 

  18. Gregory, H., 1975. Nature 257: 325–327.

    Google Scholar 

  19. Savage, C. R. Jr, Hash, J. H. & Cohen, S., 1973. J. Biol. Chem. 248: 7669–7672.

    Google Scholar 

  20. Gray, A., Dull, T. I. & Ullrich, A., 1983. Nature 303: 722–725.

    Google Scholar 

  21. Marquardt, H., Hundapiller, M. W., Hood, L. E., Twardzik, D. R., De Larco, J. E., Stephenson, J. R. & Todaro, G. J., 1983. Proc. Natl. Acad. Sci. USA 80: 4684–4688.

    Google Scholar 

  22. Marquardt, H., Hunkapiller, M. W., Hood, L. E. & Todaro, G. I., 1984. Science 223: 1079–1082.

    Google Scholar 

  23. Marquardt, H., Todaro, G. J., Henderson, L. E. & Oroszlan, S., 1981. J. Biol. Chem. 256: 6859–6865.

    Google Scholar 

  24. Bell, G. I., Merryweather, J. P., Sanchez-Pescador, R., Stempien, M. M., Priestley, L., Scott, J. & Rall, L. B., 1984. Nature 310: 775–777.

    Google Scholar 

  25. Marquardt, H., Todaro, G. J., Henderson, L. E. & Oroszlan, S., 1981. J. Biol. Chem. 256: 6859–6865.

    Google Scholar 

  26. Whitfield, H. J., Bruni, C. B., Frunzie, R., Terrell, J. E., Nissley, S. P. & Rechler, M. M., 1984. Nature 312: 277–280.

    Google Scholar 

  27. Thomas, K. A., Baglan, N. C. & Bradshaw, R. A., 1981. J. Biol. Chem. 256: 9156–9166.

    Google Scholar 

  28. Ullrich, A., Gray, A., Berman, C. & Dull, T. J., 1983. Nature 303: 821–825.

    Google Scholar 

  29. Deuel, T. F. & Huang, J. S., 1984. J. Clin. Invest. 74: 669–676.

    Google Scholar 

  30. Lomedico, P. T., Gubler, V., Hellmann, C. P., Dukovich, M., Giri, J. G., Pan, Y. C. E., Collier, K., Semionow, R., Chua, A. O. & Mizel, S. B., 1984. Nature 312: 458–462.

    Google Scholar 

  31. Fujita, T., Takaoka, C., Matsui, H. & Taniguchi, T., 1983. Proc. Natl. Acad. Sci. USA 80: 7437–7441.

    Google Scholar 

  32. Yokota, T., Lee, F., Rennick, D., Hall, C., Arai, N., Mosmann, T., Nabel, G., Cantor, H. & Arai, K.-I., 1984. Proc. Natl. Acad. Sci. USA 81: 1070–1074.

    Google Scholar 

  33. Saxena, B. B. & Rathnam, P., 1976. J. Biol. Chem. 51: 993–1005.

    Google Scholar 

  34. Bellisario, R., Carlsen, R. B. & Bahl, O. P., 1973. J. Biol. Chem. 248: 6796–6809.

    Google Scholar 

  35. Carlsen, R. B., Bahl, O. P. & Swaminathan, N., 1973. J. Biol. Chem. 248: 6810–6827.

    Google Scholar 

  36. Mise, T. & Bahl, O. P., 1980. J. Biol. Chem. 255: 8516–8622.

    Google Scholar 

  37. Lau, S. H., Rivier, J., Vale, W., Kaiser, E. T. & Kèzdy, F. J., 1983. Proc. Natl. Acad. Sci. USA 80: 7070–7074.

    Google Scholar 

  38. Gubler, U., Monahan, J. J., Lomedico, P. T., Bhatt, R. S., Collier, K. J., Hoffman, B. J., Bohlen, P., Esch, F., Ling, N., Zeytin, F., Brazeau, P., Poonian, M. S. & Cage, L. P., 1983. Proc. Natl. Acad. Sci. USA 80: 4311–4314.

    Google Scholar 

  39. Turner, C. D. & Bagnara, J. T., 1976. General Endocrinology. 6th ed., W. B. Saunders Comp. Philadelphia, London, Toronto.

    Google Scholar 

  40. Harper, H. A., Rodwell, V. W., Mayes, P. A. and assoc. eds., 1979. Review of Physiological Chemistry. 17th edn., Lange Medical Publ. Los Altos, Calif.

    Google Scholar 

  41. Blundell, T. L., Bedarkar, S. & Humbel, R. E., 1983. Fed. Proc. 42: 2592–2597.

    Google Scholar 

  42. Zetter, B. R., Chen, L. B. & Buchanan, J. M., 1978. Natl. Cancer Inst. Monogr. 48: 157–165.

    Google Scholar 

  43. Mann, K. G., Elion, J., Butkowski, R. J., Downing, M. & Nesheim, M. E., 1981. Methods Enzymol. 80: 286–302.

    Google Scholar 

  44. Snell, C. R., 1984. Biochim. Biophys. Acta 787: 53–60.

    Google Scholar 

  45. Hanif, K., Goren, H. J., Hollenberg, M. D. & Lederis, K., 1982. Mol. Pharmacol. 22: 381–388.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inglot, A.D., Popik, W., Piasecki, E. et al. A few distinct ‘molecular sandwiches’ are basis for structural and functional similarities of subspecies of interferon α and of families of growth-promoting hormones. Mol Biol Rep 11, 37–42 (1986). https://doi.org/10.1007/BF00417593

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00417593

Keywords

Navigation