Skip to main content
Log in

C *-algebraic quantization and the origin of topological quantum effects

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Concepts from the theory of abstract operator algebras are used to solve the problem of quantizing a particle moving on an arbitrary locally compact homogeneous space. Inequivalent quantizations are identified with inequivalent irreducible representations of the corresponding C *-algebra. Topological terms in the action (or Hamiltonian) are found to be representation-dependent, and are automatically induced by the quantization procedure. Known charge quantization conditions turn out to be identically satisfied. Several examples are considered, among them the Dirac monopole and the Aharonov-Bohm effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dirac, P. A. M., Proc. R. Soc. London A133, 60 (1931).

    Google Scholar 

  2. Wu, T. T. and Yang, C. N., Phys. Rev. D12, 3845 (1975) and Nucl. Phys. B107, 365 (1976).

    Google Scholar 

  3. Isham, C. J., in DeWitt, B. S. and Stora, R. (eds.), Relativity, Groups and Topology II (Les Houches 1983), North-Holland, Amsterdam, 1984.

    Google Scholar 

  4. Bardeen, W. A. and White, A. R. (eds.), Anomalies, Geometry, and Topology, World Scientific, Singapore, 1985.

    Google Scholar 

  5. Pruisken, A. M. M., Phys. Rev. Lett. 61, 1297 (1988).

    Google Scholar 

  6. Wiegman, P., Phys. Rev. Lett. 60, 821 (1988).

    Google Scholar 

  7. Reed, M. and Simon, B., Functional Analysis and Fourier Analysis, Self-adjointness, Methods of Modern Mathematical Physics Vols. I & II, Academic Press, New York, 1972 and 1975.

    Google Scholar 

  8. Laidlaw, M. G. G. and Morette DeWitt, C., Phys. Rev. D3, 1375 (1971).

    Google Scholar 

  9. Schulman, L. S., Techniques and Applications of Path Integration, Wiley, New York, 1981.

    Google Scholar 

  10. Souriau, J.-M., Structure des Systèmes Dynamiques Dunod, Paris, 1969.

    Google Scholar 

  11. Woodhouse, N., Geometric Quantization, Clarendon Press, Oxford, 1980.

    Google Scholar 

  12. Alvarez, O., Commun. Math. Phys. 100, 279 (1985).

    Google Scholar 

  13. Gawedzki, K., in 't Hooft, G. et al. (eds.), Nonperturbative Quantum Field Theory (Cargèse 1987), Plenum, New York, 1988.

    Google Scholar 

  14. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., and Sternheimer, D., Ann. Phys. (N.Y.) 111, 61, 111 (1978).

    Google Scholar 

  15. Rieffel, M. A., Commun. Math. Phys. 122, 531 (1989).

    Google Scholar 

  16. Ali, S. T. and Doebner, H. B., in Kim, Y. S. and Zachary, W. W. (eds.), The Physics of Phase Space, SLNP 278, Springer, Berlin, 1987.

    Google Scholar 

  17. Segal, I. E., Mathematical Problems of Relativistic Physics, Am. Math. Soc., Providence, 1963, and in F. Lurçat (ed.), Cargèse Lectures in Theoretical Physics 1965, Gordon & Breach, New York, 1967.

    Google Scholar 

  18. Haag, R. and Kastler, D., J. Math. Phys. 5, 848 (1964).

    Google Scholar 

  19. Robinson, D. J. S., A Course in the Theory of Groups,Springer, New York, 1982.

    Google Scholar 

  20. Weyl, H., The Theory of Groups and Quantum Mechanics,Dove, New York, 1950.

    Google Scholar 

  21. Mackey, G. W., Induced Representations, Benjamin, New York, 1968.

    Google Scholar 

  22. Majid, S., Class. Quantum Grav. 5, 1587 (1988).

    Google Scholar 

  23. Landsman, N. P., Concepts in Thermal Field Theory, PhD thesis, University of Amsterdam, 1989.

  24. Doplicher, S., Kastler, D., and Robinson, D. W., Commun. Math. Phys. 3, 1 (1966).

    Google Scholar 

  25. Fell, J. M. G. and Doran, R. S., Representations of *-Algebras, Locally Compact Groups, and Banach *-Algebraic Bundels, Vol. 2, Academic Press, San Diego, 1988.

    Google Scholar 

  26. Barut, A. O. and Raçka, R., Theory of Group Representations and Applications, PWN, Warsaw, 1977.

    Google Scholar 

  27. Horváthy, P. A., Phys. Lett. A76, 11 (1980).

    Google Scholar 

  28. Simon, B., in Lieb, E. H. et al. (eds.), Studies in Mathematical Physics, Princeton Univ. Press, Princeton, 1976.

    Google Scholar 

  29. Witten, E., Nucl. Phys. B223, 422 (1983).

    Google Scholar 

  30. Hurst, C. A., Ann. Phys. (N.Y.) 50, 51 (1968).

    Google Scholar 

  31. Breitenecker, M. and Grümm, H. R., Nuovo. Cimento 55A, 453 (1980).

    Google Scholar 

  32. Aharonov, Y. and Bohm, D., Phys. Rev. 115, 485 (1959).

    Google Scholar 

  33. Faddeev, L. D. and Shatashvili, S., Theor. Mat. Fiz. 60, 206 (1984).

    Google Scholar 

  34. Jackiw, R., Comments Nucl. Part. Phys. 15, 99 (1985).

    Google Scholar 

  35. Rajeev, S. G., Phys. Rev. D29, 2944 (1984).

    Google Scholar 

  36. Alcalde, C. and Sternheimer, D., Lett. Math. Phys. 17, 117 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landsman, N.P. C *-algebraic quantization and the origin of topological quantum effects. Lett Math Phys 20, 11–18 (1990). https://doi.org/10.1007/BF00417225

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00417225

AMS subject classifications (1980)

Navigation