Skip to main content
Log in

l-glutamate transport in Lactobacillus helveticus

  • Research
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

An energy source (glucose or lactose) was required for the transport of l-glutamic acid by Lactobacillus helveticus. Mg2+, K+ and Li+ increased its accumulation while Ca2+ and Na+ decreased it. It was inhibited by NaF, indicating that ATP may be involved in uptake. Optimum transport was at pH 7.3 and 45°C. l-Glutamic acid transport showed a high degree of stereospecificity, as neither d-glutamate nor d-aspartate were active. Proton-conducting uncouplers, like carbonyl cyanide-m-chlorophenylhydrazone, and ionophores (nigericin, monensin and gramicidin) were strongly inhibitory. These results indicate that a proton motive force may be involved in the transport of l-glutamic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asghar, S.S., Levin, E. & Harold, F.M. 1973 Accumulation of neutral amino acid by S. faecalis. Journal of Biological Chemistry 248, 5225–5233.

    Google Scholar 

  • Bakker, E.P. & Harold, F.M. 1980 Energy coupling to potassium transport in S. faecalis. Interplay of ATP and the proton-motive force. Journal of Biological Chemistry 255, 433–440.

    Google Scholar 

  • Bracquart, P., LeDeaut, J.Y. & Linden, G. 1984 Uptake of glutamic acid by S. thermophilus. Journal of Dairy Research 56, 107–116.

    Google Scholar 

  • Brock, T.D. & Moo-Penn, G. 1962 An amino acid transport system in S. faecium. Archives of Biochemistry and Biophysics 98, 183–190.

    Google Scholar 

  • DeMan, J.C., Rogosa, M. & Sharpe, M.E. 1960 A medium for the cultivation of lactobacilli. Journal of Applied Bacteriology 23, 130–155.

    Google Scholar 

  • Dixon, M. & Weeb, E.C. 1979 Enzymes, 3rd edn. London: Longman.

    Google Scholar 

  • Driessen, A.J.M., Kodde, J., DeJong, S. & Konings, W.N. 1987 Neutral amino acid transport by membrane vesicles of S. cremoris is subject to regulation by internal pH. Journal of Bacteriology 169, 2748–2754.

    Google Scholar 

  • Hamouy, D., Boyaval, E. & Desmazeaud, M.J. 1985 Active transport of l-serine in Brevibacterium linens ATCC 9175. Milchwissenshaft 40, 133–136.

    Google Scholar 

  • Heckels, J.E., Lambert, P.A. & Baddiley, J. 1977 Binding of magnesium and cell walls of Bacillus subtilis W 23 containing teichoic acid or teichuronic acid. Biochemical Journal 162, 359–362.

    Google Scholar 

  • Heptinstall, S., Archibald, A.R. & Baddiley, J. 1970 Teichoic acid and membrane function in bacteria. Nature, 225, 519–521.

    Google Scholar 

  • Ledesma, O.V., Ruiz Holgado, A.P., Oliver, G., Giori, G.S., Raibaud, P. & Galpin, J.V. 1977 A synthetic medium for comparative nutritional studies of lactobacilli. Journal of Applied Bacteriology 42, 123–133.

    Google Scholar 

  • Noji, S., Sato, Y., Suzuki, R. & Taniguchi, S. 1988 Effect of intracellular pH and potassium ions on a primary transport system for glutamate/aspartate in Streptococcus mutans. European Journal of Biochemistry 175, 491–495.

    Google Scholar 

  • Poolman, B., Hellingwerf, K.J. & Konings, W.N. 1987a Regulation of the glutamate-glutamine transport system by intracellular pH in S. lactis. Journal of Bacteriology 169, 2272–2276.

    Google Scholar 

  • Poolman, B., Smid, E. & Konings, W.N. 1987b Kinetic properties of a phosphate-bond-driven glutamate-glutamine transport system in S. lactis and S. cremoris. Journal of Bacteriology 169, 2755–2761.

    Google Scholar 

  • Rayman, M.K., Lo, T.C.Y. & Sansal, B.D. 1972 Transport of succinate in E. coli II. Characteristics of uptake and energy coupling with transport in membrane preparations. Journal of Biological Chemistry 247, 6332–6339.

    Google Scholar 

  • Reid, K.G., Utech, N.M. & Holden, J.T. 1970 Multiple transport components for dicarboxylic amino acids in S. faecalis. Journal of Biological Chemistry 245, 5261–5272.

    Google Scholar 

  • Rice, G.H., Stewart, F.H.C., Hillier, A.J. & Jago, G.R. 1978 The uptake of amino acids and peptides by S. lactis. Journal of Dairy Research 45, 93–107.

    Google Scholar 

  • Strobel, J.H., Russel, J.B., Driessen, A.J.M. & Konings, W.N. 1989 Transport of amino acids in L. casei by proton-motive-force-dependent and non-proton-motive-force-dependent mechanisms. Journal of Bacteriology 171, 280–284.

    Google Scholar 

  • Thompson, J. 1976 Characteristics and energy requirements of an α aminobutyric acid transport system in S. lactis. Journal of Bacteriology 127, 719–730.

    Google Scholar 

Download references

Authors

Additional information

The authors are with the Centro de Referencia para Lactobacilos, Chacabuco 145 4000 S.M. de Tucumán, Argentina and the Cátedra de Microbiologia Superior, Universidad Nacional de Tucumán, Argentina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Giori, G.S., de Valdez, G.F. l-glutamate transport in Lactobacillus helveticus . World Journal of Microbiology & Biotechnology 10, 285–289 (1994). https://doi.org/10.1007/BF00414864

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00414864

Key words

Navigation