Skip to main content
Log in

Biosynthesis of 5-aminolevulinic acid in Methanobacterium thermoautotrophicum

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The pathway of 5-aminolevulinic acid (ALA) synthesis in growing cells of Methanobacterium thermoautotrophicum was studied. Advantage was taken of the fact that this anaerobic archaebacterium excretes ALA into the medium when growing in the presence of levulinic acid, which specifically inhibits the biosynthesis of tetrapyrroles at the level of ALA dehydratase. It was found that [1,4-14C]-succinate rather than [2-14C]glycine is incorporated into ALA. Evidence is provided that succinate incorporation into ALA probably proceeds via 2-oxoglutarate, which in M. thermoautotrophicum is synthesized from succinyl-CoA by reductive carboxylation. The data are consistent with the operation of the C-5 pathway for ALA synthesis and exclude the Shemin pathway in this methanogenic bacterium. The presence of l-alanine: 4,5-dioxovaleric acid aminotransferase activity and the apparent absence of ALA synthase in cell extracts support this conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beale SI (1978) δ-Aminolevulinic acid in plants: its biosynthesis, regulation, and role in plastid development. Ann Rev Plant Physiol 29:95–120

    Google Scholar 

  • Beale SI, Gough SP, Granick S (1975) Biosynthesis of δ-aminolevulinic acid from the intact carbon skeleton of glutamic acid in greening barley. Proc Natl Acad Sci USA 72:2719–2723

    Google Scholar 

  • Brandis A, Thauer RK, Stetter KO (1981) Relatedness of strains ΔH and Marburg of Methanobacterium thermoautotropicum. Zbl Bakt Hyg, I. Abt Orig C 2:311–317

    Google Scholar 

  • Brumm PJ, Thomas GA, Friedmann HC (1982) The role of 4,5-dioxovaleric acid in porphyrin and vitamin B12 formation by clostridia. Biochem Biophys Res Commun 104:814–822

    Google Scholar 

  • Burnham BF (1970) δ-Aminolevulinic acid synthase (Rhodopseudomonas spheroides). In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol XVII A. Academic Press, New York London, pp 195–200

    Google Scholar 

  • Chen J, Miller GW, Takemoto JY (1981) Biosynthesis of δ-aminolevulinic acid in Rhodopseudomonas spheroides. Arch Biochem Biophys 208:221–228

    Google Scholar 

  • Dörnemann D, Senger H (1980) The synthesis and properties of 4,5-dioxovaleric acid, a possible intermediate in the biosynthesis of 5-aminolaevulinic acid, and its in vivo formation in Scenedesmus obliquus. Biochim Biophys Acta 628:35–45

    Google Scholar 

  • Ellefson WL, Whitman WB, Wolfe RS (1982) Nickel-containing factor F430: Chromophore of the methylreductase of Methanobacterium. Proc Natl Acad Sci USA 79:3707–3710

    Google Scholar 

  • Ford SH, Friedmann HC (1979) Formation of δ-aminolevulinic acid from glutamic acid by a partially purified enzyme system from wheat leaves. Biochim Biophys Acta 569:153–158

    Google Scholar 

  • Fox GE, Stackebrandt E, Hespell RB, Gibson J, Maniloff J, Dyer TA, Wolfe RS, Balch WE, Tanner RS, Magrum LJ, Zablen LB, Blakemore R, Gupta R, Bonen L, Lewis BJ, Stahl DA, Luehrsen KR, Chen KN, Woese CR (1980) The phylogeny of prokaryotes. Science 209:457–463

    Google Scholar 

  • Fuchs G, Stupperich E (1978) Evidence for an incomplete reductive carboxylic acid cycle in Methanobacterium thermoautotrophicum. Arch Microbiol 118:121–125

    Google Scholar 

  • Fuchs G, Stupperich E, Thauer RK (1978) Acetate assimilation and the synthesis of alanine, aspartate and glutamate in Methanobacterium thermoautotrophicum. Arch Microbiol 117:61–66

    Google Scholar 

  • Granick S, Beale SI (1978) Hemes, chlorophylls, and related compounds: Biosynthesis and metabolic regulation. In: Meister A (ed) Advances in enzymology, vol 46, pp 33–203

  • Hardy TL, Holland DO, Nayler JHC (1955) One-phase solvent mixtures for the separation of amino acids. Anal Chemie 27:971–974

    Google Scholar 

  • Höllriegl V, Lamm L, Rowold J, Hörig J, Renz P (1982) Biosynthesis of vitamin B12. Different pathways in some aerobic and anaerobic microorganisms. Arch Microbiol 132:155–158

    Google Scholar 

  • Jaenchen R, Gilles HH, Thauer RK (1981) Inhibition of factor F430 synthesis by levulinic acid in Methanobacterium thermoautotrophicum. FEMS Microbiol Lett 12:167–170

    Google Scholar 

  • Jordan PM, Shemin D (1972) δ-Aminolevulinic acid synthetase. In: Boyer PD (ed) The enzymes, vol 7. Academic Press, New York London, pp 339–356

    Google Scholar 

  • Kandler O (1981) Archaebakterien und Phylogenie der Organismen. Naturwissenschaften 68:183–192

    Google Scholar 

  • Kannangara CG, Gough SP (1978) Biosynthesis of Δ-aminolevulinate in greening barley leaves: Glutamate 1-semialdehyde aminotransferase. Carlsberg Res Commun 43:185–194

    Google Scholar 

  • Kedenburg CP (1971) A lithium buffer system for accelerated singlecolumn amino acid analysis in physiological fluids. Anal Biochem 40:35–42

    Google Scholar 

  • Kipe-Nolt JA, Stevens SE (1980) Biosynthesis of δ-aminolevulinic acid from glutamate in Agmenellum quadruplicatum. Plant Physiol 65:126–128

    Google Scholar 

  • Klein O, Dörnemann D, Senger H (1980) Two biosynthetic pathways to 5-aminolevulinic acid in algae. Int j Biochem 12:725–728

    Google Scholar 

  • Klein O, Porra RJ (1982) The participation of the Shemin and C5 pathways in 5-aminolaevulinate and chlorophyll formation in higher plants and facultative photosynthetic bacteria. Hoppe-Seyler's Z Physiol Chemie 363:551–562

    Google Scholar 

  • Krzycki J, Zeikus JG (1980) Quantification of corrinoids in methanogenic bacteria. Curr Microbiol 3:243–245

    Google Scholar 

  • Lascelles J (1957) Synthesis of porphyrins by cell suspensions of Tetrahymena vorax: Effect of members of the vitamin B group. Biochem J 66:65–72

    Google Scholar 

  • Lohr JB, Friedmann HC (1976) New pathway for δ-aminolevulinic acid biosynthesis: Formation from α-ketoglutaric acid by two partially purified plant enzymes. Biochem Biophys Res Commun 69:908–913

    Google Scholar 

  • Mauzerall D, Granick S (1956) The occurrence and determination of δ-aminolevulinic acid and porphobilinogen in urine. J Biol Chem 219:435–446

    Google Scholar 

  • Nandi DL, Shemin D (1968) δ-Aminolevulinic acid dehydratase of Rhodopseudomonas spheroides. III. Mechanism of porphobilinogen synthesis. J Biol Chem 243:1236–1242

    Google Scholar 

  • Noguchi T, Mori R (1981) Biosynthesis of porphyrin precursors in mammals. J Biol Chem 256:10335–10339

    Google Scholar 

  • Oh-hama T, Seto H, Otake N, Miyachi S (1982) 13C-NMR evidence for the pathway of chlorophyll biosynthesis in green algae. Biochem Biophys Res Commun 105:647–652

    Google Scholar 

  • Pfaltz A, Jaun B, Fässler A, Eschenmoser A, Jaenchen R, Gilles H, Diekert G, Thauer RK (1982) Zur Kenntnis des Faktors F430 aus methanogenen Bakterien: Struktur des porphinoiden Ligand-systems. Helv Chim Acta 65:828–865

    Google Scholar 

  • Scherer P, Sahm H (1980) Growth of Methanosarcrina barkeri on methanolor acetate in a defined medium. In: Stafford DA, Wheatley BI (eds) Proc 1st Int Sympos on anaerobic digestion. Scientific Press, Cardiff

    Google Scholar 

  • Schönheit P, Moll J, Thauer RK (1980) Growth parameters (K s, μmax, Y s) of Methanobacterium thermoautotrophicum. Arch Microbiol 127: 59–65

    Google Scholar 

  • Stegemann H (1960) Bestimmung von Aminosäuren mit dithionitreduziertem Ninhydrin. Hoppe-Seyler's Z Physiol Chemie 319:102–109

    Google Scholar 

  • Thauer RK, Brandis-Heep A, Diekert G, Gilles HH, Graf EG, Jaenchen R, Schönheit P (1983) Drei neue Nickelenzyme aus anaeroben Bakterien. Naturwissenschaften 70:60–64

    Google Scholar 

  • Turner JM, Neuberger A (1970) l-Alanine: 4,5-dioxovalerate aminotransferase (Rholopseudomonas spheroides). In: Colowick SP, Kaplan NO (eds) Methods in enzymology Vol XVII A. Academic Press, New York London, pp 188–192

    Google Scholar 

  • Zeikus JG, Fuchs G, Kenealy W, Thauer RK (1977) Oxidoreductases involved in cell carbon synthesis of Methanobacterium thermoautotrophicum. J Bacteriol 132:604–613

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilles, H., Jaenchen, R. & Thauer, R.K. Biosynthesis of 5-aminolevulinic acid in Methanobacterium thermoautotrophicum . Arch Microbiol 135, 237–240 (1983). https://doi.org/10.1007/BF00414486

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00414486

Key words

Navigation