Skip to main content
Log in

Pathways of glycollate metabolism in the blue-green alga Anabaena cylindrica

  • Published:
Archiv für Mikrobiologie Aims and scope Submit manuscript

Summary

  1. 1.

    Exogenous glycollate was assimilated by the blue-green alga Anabaena cylindrica.

  2. 2.

    About 50% of the C-1 carbon of 14C-1-glycollate (i.e.25% of the total carbon) was released as 14CO2 in the dark and also in the light in the presence of DCMU. Most of the 14CO2 released in the light in the absence of DCMU was refixed.

  3. 3.

    Assimilation was almost completely inhibited by α-hydroxy-2-pyridinemethane sulphonic acid, an inhibitor of enzymic glycollate oxidation. Cell extracts catalyzed the oxidation of glycollate to glyoxylate at rates sufficient to account for the in vivo assimilation.

  4. 4.

    Isonicotinylhydrazide, an inhibitor of the conversion of glycine to serine in higher plant/green algae glycollate metabolism, did not significantly affect glycollate metabolism in A. cylindrica. Short-term labelling experiments with 14C-1-glycollate in the light and dark did not show a significant metabolism of 14C via glycine and serine. However, the enzymes for the metabolism of glyoxylate via glycine, serine and hydroxypyruvate to glycerate were demonstrated in cell extracts, although the activity of the enzyme catalyzing the metabolism of serine to hydroxypyruvate was not sufficient to account for the in vivo rate of glycollate assimilation.

  5. 5.

    Cell extracts catalyzed the enzymic condensative decarboxylation of glyoxylate to tartronic semialdehyde and also the enzymic reduction of tartronic semialdehyde to glycerate. The activities in extracts were sufficient to account for the total in vivo photoassimilation of glycollate. The specific activity of malate synthase was insufficient to account for the total photometabolism of glycollate but exceeded the in vivo rate in the dark.

  6. 6.

    On the basis of the inhibitor and kinetic experiments and in terms of the enzymes detected, it appears that in the light glycollate is metabolized mainly via glyoxylate → tatronic semialdehyde → glycerate → 3-phosphoglycerate → (glycolytic pathway) → pyruvate → alanine plus tricarboxylic acid cycle and related compounds. The bulk of the CO2 released in the light is probably refixed via the Calvin cycle. In the dark, the glyoxylate, produced from exogenous glycollate, appears to be metabolized mainly by malate synthase directly to malate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HPMS:

α-hydroxy-2-pyridinemethane sulphonic acid

INH:

isonicotinylhydrazide

DCPIP:

2,6-dichlorophenolindophenol

DCMU:

3-(3,4-dichlorophenyl)-1,1-dimethylurea

PLP:

pyridoxal phosphate

References

  • Allen, M. B., Arnon, D. I.: Growth and nitrogen fixation in Anabaena cylindrica Lemm. Plant. Physiol. 30, 366–372 (1955)

    Google Scholar 

  • Badour, S. S., Waygood, E. R.: Glyoxylate carboxy-lyase activity in the unicellular green alga Gloemonas sp. Biochim. biophys. Acta (Amst.) 242, 493–499 (1971)

    Google Scholar 

  • Boehringer, GmbH.: Pyruvate-enzymatic determination of the pyruvate concentration in blood. Test Handbook, Boehringer Mannheim GmbH (1971)

  • Bothe, H., Falkenberg, B.: Demonstration and possible role of a ferredoxin-dependent pyruvate decarboxylation in the nitrogen-fixing blue-green alga Anabaena cylindrica. Plant Sci. Letters 1, 151–156 (1973)

    Google Scholar 

  • Cánovas, J. L., Kornberg, H. L.: Properties and regulation of phosphopyruvate carboxylase activity in Escherichia coli. Proc. roy. Soc. B 165, 189–205 (1966)

    Google Scholar 

  • Carr, N. G.: Mechanism of autotrophic physiology in the blue-green algae. J. gen. Microbiol. 75 (2), v-vi (1973)

    Google Scholar 

  • Cheng, K. H., Miller, A. G., Colman, B.: An investigation of glycolate excretion in two species of blue-green algae. Planta (Berl.) 103, 110–116 (1972)

    Google Scholar 

  • Codd, G. A., Schmid, G. H.: Serological characterization of the glycolate-oxidising enzymes from tobacco, Euglena gracilis and a yellow mutant of Chlorella vulgaris. Plant Physiol. 50, 769–773 (1972)

    Google Scholar 

  • Codd, G. A., Schmid, G. H., Kowallik, W.: Further enzyme studies and electron microscopy of the peroxisomes of a mutant of Chlorella vulgaris. Arch. Mikrobiol. 92, 21–38 (1973)

    Google Scholar 

  • Döhler, G., Koch, R.: Die Wirkung monochromatischen Lichts auf die extracelluläre Glykolsäure-Ausscheidung und die Lichtatmung bei der Blaualge Anacystis nidulans. Planta (Berl.) 105, 352–359 (1972)

    Google Scholar 

  • Döhler, G., Przybylla, K.-R.: Einfluß der Temperatur auf die Lichtatmung der Blaualge Anacystis nidulans. Planta (Berl.) 110, 153–158 (1973)

    Google Scholar 

  • Goulding, K. H., Merrett, M. J.: The photometabolism of acetate by Chlorella pyrenoidosa. J. exp. Bot. 17, 678–689 (1966)

    Google Scholar 

  • Grodzinski, G., Colman, B.: Glycolic acid oxidase activity in cell-free preparations of blue-green algae. Plant Physiol. 45, 735–737 (1970)

    Google Scholar 

  • Haystead, A., Dharmawardene, M. W. N., Stewart, W. D. P.: Ammonia assimilation in a nitrogen-fixing blue-green alga. Plant. Sci. Letters 1, 439–445 (1973)

    Google Scholar 

  • Kornberg, H. L., Elsden, S. R.: The metabolism of 2-carbon compounds by microorganisms. In: Advances in enzymology, F. F. Nord, Ed., Vol. 23, pp. 434–446. New York-London: Wiley 1961

    Google Scholar 

  • Kornberg, H. L., Gotto, A. M.: The metabolism of C2 compounds in microorganisms. 6. Synthesis of cell constituents from glycollate by Pseudomonas sp. Biochem. J. 78, 69–82 (1961)

    Google Scholar 

  • Lex, M., Silvester, W. B., Stewart, W. D. P.: Photorespiration and nitrogenase activity in the blue-green alga Anabaena cylindrica. Proc. roy. Soc. B 180, 87–102 (1972)

    Google Scholar 

  • Long, A. G., Quayle, J. R., Stedman, R. J.: The separation of acids by paper partition chromatography. J. chem. Soc. 1951, 2197–2201

  • Lord, J. M.: Glycolate oxidoreductase in Escherichia coli. Biochim. biophys. Acta (Amst.) 267, 227–237 (1972)

    Google Scholar 

  • Lord, J. M., Merrett, M. J.: The pathway of glycollate utilization in Chlorella pyrenoidosa. Biochem. J. 117, 929–937 (1970)

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)

    Google Scholar 

  • Maroc, J.: La conversion du glycolate en glucose et ses rélations avec la biogenèse de l'acide tartrique. Physiol. Vég. 5, 37–46 (1967)

    Google Scholar 

  • Merrett, M. H., Goulding, K. H.: Short-term products of 14C-acetate assimilation by Chlorella pyrenoidosa in the light. J. exp. Bot. 18, 128–139 (1967)

    Google Scholar 

  • Miller, A. G., Cheng, K. H., Colman, B.: The uptake and oxidation of glycolic acid by blue-green algae. J. Physiol. 7, 97–100 (1971)

    Google Scholar 

  • Milner, H. W., Lawrence, N. S., French, C. S.: Colloidal dispersion of chloroplast material. Science 111, 633–634 (1950)

    Google Scholar 

  • Mortensen, L. E., Valentine, R. C., Carnahan, J. E.: An electron transport factor from Clostridium pasteurianum. Biochem. biophys. Res. Commun. 7, 448–452 (1963)

    Google Scholar 

  • Ornston, M. K., Ornston, L. N.: Two forms of d-glycerate kinase in Escherichia coli. J. Bact. 97, 1227–1233 (1969)

    Google Scholar 

  • Patterson, M. S., Greene, R. C.: Measurement of low energy β-emitters in aqueous solution by liquid scintillation counting of emulsions. Analyt. Chem. 37, 854–857 (1965)

    Google Scholar 

  • Payne, J., Morris, J. G.: Pyruvate carboxylase in Rhodopseudomonas spheroides. J. gen. Microbiol. 59, 97–101 (1969)

    Google Scholar 

  • Pearce, J., Carr, N. G.: The metabolism of acetate by the blue-green algae, Anabaena variabilis and Anacystis nidulans. J. gen. Microbiol. 49, 301–313 (1967)

    Google Scholar 

  • Pritchard, G. G., Griffin, W. J., Whittingham, C. P.: The effect of carbon dioxide concentration, light intensity and isonicotinyl hydrazide on the photosynthetic production of glycollic acid by Chlorella. J. exp. Bot. 13, 176–184 (1962)

    Google Scholar 

  • Taylor, R. T., Weissbach, H.: Radioactive assay for serine transhydroxymethylase. Analyt. Biochem. 13, 80–84 (1965)

    Google Scholar 

  • Tolbert, N. E.: Microbodies—peroxisomes and glyoxysomes. Ann. Rev. Plant Physiol. 22, 45–74 (1971)

    Google Scholar 

  • Tolbert, N. E.: Photorespiration. In: Algal physiology and biochemistry, W.D.P. Stewart, Ed., pp. 474–504. Oxford: Blackwell 1973

    Google Scholar 

  • Wolk, C. P.: Physiology and cytological chemistry of blue-green algae. Bact. Rev. 37, 32–101 (1973)

    Google Scholar 

  • Zelitch, I.: α-Hydroxysulfonates as inhibitors of the enzymatic oxidation of glycolic and lactic acids. J. biol. Chem. 224, 251–260 (1957)

    Google Scholar 

  • Zelitch, I.: The photooxidation of glyoxylate by envelope-free spinach chloroplasts and its relation to photorespiration. Arch. Biochem. Biophys. 150, 698–707 (1972a)

    Google Scholar 

  • Zelitch, I.: Comparison of the effectiveness of glycolic acid and glycine as substrates for photorespiration. Plant Physiol. 50, 109–113 (1972b)

    Google Scholar 

  • Zelitch, I.: Plant productivity and the control of photorespiration. Proc. nat. Acad. Sci. (Wash.) 70, 579–584 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Codd, G.A., Stewart, W.D.P. Pathways of glycollate metabolism in the blue-green alga Anabaena cylindrica . Archiv. Mikrobiol. 94, 11–28 (1973). https://doi.org/10.1007/BF00414075

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00414075

Keywords

Navigation