Skip to main content
Log in

Recoil in macromolecular solutions according to rigid dumbbell kinetic theory

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

A macromolecular solution is represented by the simple model of rigid dumbbells suspended in a Newtonian fluid with Brownian motion included. Hydrodynamic interaction is not taken into account. It is found that for this model there will be recoil after the cessation of steady shearing flow. The ultimate shear recovery S is developed as a power series in κ, the shear rate prior to the cessation of the steady shear flow:

$$S_\infty = (\theta _0 /2\eta _0 ) \kappa ^\user1{ - } + O(\kappa ^\user1{ - } )^3$$

where η0 and θ0 values of the viscosity and primary normal stress functions respectively at zero-shear rate. The coefficient of the term in (κ)3 is calculated. In addition, the behavior of the normal stresses during the recoil process is found; during recoil τ22−τ33 has the opposite sign from τ11−τ22.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kirkwood, J. G., Macromolecules (Ed. by P. L. Auer), Gordon and Breach, New York (1967).

    Google Scholar 

  2. Rouse, Jr., P. E., J. Chem. Phys. 21 (1953) 1272.

    Google Scholar 

  3. Zimm, B. H., J. Chem. Phys. 24 (1956) 269.

    Google Scholar 

  4. Kirkwood, J. G. and R. J. Plock, J. Chem. Phys. 24 (1956) 665.

    Google Scholar 

  5. Prager, S., Trans. Soc. Rheology 1 (1957) 53.

    Google Scholar 

  6. Kotaka, T., J. Chem. Phys. 30 (1959) 1566.

    Google Scholar 

  7. Giesekus, H., Kolloid-Zeitschrift 147 (1956) 29; see also erratum in fn. 18 of Rheologica Acta 1 (1961) 404.

    Google Scholar 

  8. Kirkwood, J. G. and P. L. Auer, J. Chem. Phys. 19 (1951) 281.

    Google Scholar 

  9. Fraenkel, G. K., J. Chem. Phys. 20 (1952) 642.

    Google Scholar 

  10. Paul, E., J. Chem. Phys. 51 (1969) 1271.

    Google Scholar 

  11. Bird, R. B., M. W. Johnson, Jr., and J. F. Stevenson, Trans. Fifth International Congress of Rheology, Kyoto, Japan, October 1968.

  12. Warner, Jr., H. R. and R. B. Bird, AIChE Journal 16 (1970) 150.

    Google Scholar 

  13. Bird, R. B., H. R. Warner, Jr., and W. R. Ramakka, J. Chem. Phys. 52 (1970) 2001.

    Google Scholar 

  14. Giesekus, H., Rheologica Acta 1 (1958) 2.

    Google Scholar 

  15. Evans, D. C., H. R. Warner, Jr., W. R. Ramakka, and R. B. Bird, J. Chem. Phys. 52 (1970) 4086.

    Google Scholar 

  16. Cottrell, F. R., E. W. Merrill, and K. A. Smith, J. Polymer Science (A2) 7 (1969) 1415.

    Google Scholar 

  17. Peterlin, A., J. Polymer Sci. 4B (1966) 287.

    Google Scholar 

  18. Lodge, A. S., Elastic Liquids, Academic Press, New York (1964).

    Google Scholar 

  19. Hirschfelder, J. O., C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, Wiley, 2nd corrected printing (1964) 905.

  20. Benbow, J. J. and E. R. Howells, Polymer 2 (1961) 429.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bird, R.B., Evans, D.C. & Warner, H.R. Recoil in macromolecular solutions according to rigid dumbbell kinetic theory. Appl. Sci. Res. 23, 185–192 (1971). https://doi.org/10.1007/BF00413196

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00413196

Keywords

Navigation