Skip to main content
Log in

Heat transfer in a radiating, nonsteady, three-dimensional stagnation flow

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

A similar solution has been obtained to the problem of simultaneous radiation and convection for nonsteady stagnation point flow over a three-dimensional blunt body with both boundary layer suction and injection.

The diffusion approximation is used to characterize the radiative heat flux. The three-dimensional, time-dependent equations of motion and the energy equation have been transformed into a set of ordinary differential equations by the similarity transformation and the resulting ordinary differential equations have been solved numerically. The effects of accelerating and decelerating flow, the three-dimensional geometry, injection and suction, hot and cold wall conditions, and the conduction-to-radiation parameter on the temperature distribution within the flow have been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

constant

C, D :

geometry and nonsteady parameter respectively

c p :

specific heat at constant pressure

f :

nondimensional stream function in x-direction

F :

nondimensional pressure function

g :

nondimensional stream function in y-direction

k :

thermal conductivity

N :

conduction-to-radiation parameter \(\left( { = \frac{{k\kappa }}{{4\sigma T_\infty ^3 }}} \right)\)

P :

pressure

Pr :

Prandtl number

Pr m :

modified Prandtl number \(\left( { = \frac{{P\gamma }}{{1 + \tfrac{4}{{3N}}}}} \right)\)

q :

total heat flux

q r :

radiation heat flux

t :

time

T :

temperature

u, v, w :

the x, y, and z-direction velocity components respectively in the boundary layer

U, V :

the x and y-direction velocity components respectively at the edge of the boundary layer

x :

coordinate tangent to surface in the main flow direction

y :

coordinate tangent to surface in the cross flow direction

z :

coordinate normal to the surface

α :

acceleration parameter

η :

similarity variable in z and t

θ :

nondimensional temperature for nonlinear case \(\left( { = \frac{T}{{T_\infty }}} \right)\)

\(\bar \theta\) :

nondimensional temperature for linearized case \(\left( { = \frac{{T - T_{\text{W}} }}{{T_\infty - T_{\text{W}} }}} \right)\)

κ :

absorption coefficient

μ :

viscosity

ν :

kinematic viscosity

ρ :

density

σ :

Stefan-Boltzmann constant

primes:

denote differentiation with respect to η

w:

conditions at the wall

x, y, z :

conditions in the x, y, and x-directions respectively

∞:

conditions in the free stream

References

  1. Viskanta, R. and R. J. Grosh, Int. J. Heat Mass Transfer, 5 (1962) 795.

    Article  Google Scholar 

  2. Cess, R. D., J. Heat Transfer 86C (1964) 469.

    Google Scholar 

  3. Cess, R. D., Advances in Heat Transfer. Ed. T. F. Irvine and J. P. Hartnett, 1, Academic Press, New York (1964).

    Google Scholar 

  4. Novotny, J. L., Y. Taitel and J. P. Hartnett, Proc. of the 1965 Heat Transfer and Fluid Mech. Institute. A. F. Charwatt, ed. Stanford University Press (1965).

  5. Smith, A. M. and H. A. Hassan, Nongrey Radiation Effects on the Boundary Layer at Low Eckert Numbers, ASME Paper, 66-WA/HT-35 (1966).

  6. Pai, S. I. and C. K. Tsao, Proceedings of the Third International Heat Transfer Conference, Chicago, 5 (1966) 129.

    Google Scholar 

  7. Cess, R. D., Proceedings of the Third International Heat Transfer Conference, Chicago, 5 (1966) 154.

    Google Scholar 

  8. Novotny, J. L. and Kwang-Tzu Yang, The Interaction of Thermal Radiation in Optically Thick Boundary Layers, ASME Paper 67-HT-9 (1967).

  9. Howe, J. T. and J. R. Viegas, Solutions of Ionized Radiating Shock Layer, Including Reabsorption and Foreign Species Effects and Stagnation Region Heat Transfer, NASA TR R-159 (1963).

  10. Howe, J. T. and Y. S. Sheaffer, Mass Addition in the Stagnation Region for Velocity up to 50,000 Feet Per Second, NASA TR R-207 (1964).

  11. Shwartz, J., Radiation Effects in the Stagnation Region Boundary Layer, Technical Report 119, AFOSR 66-0129 (Nov. 1965).

  12. Olstad, W. B., Proc. Heat Transfer and Fluid Mech. Institute, Stanford University Press, (1965) 138.

  13. Macken, N. A. and J. P. Hartnett, Proc. of the 1967 Heat Transfer and Fluid Mech. Institute, Stanford University Press (1967).

  14. Kirling, R. B., W. S. Rigdon and M. Thomas, Proc. of the 1967 Heat Transfer and Fluid Mech. Institute, Stanford University Press (1967).

  15. Mirels, H. and W. E. Welsh, AIAA Journal 6 (1968) 1105.

    Article  ADS  Google Scholar 

  16. Kim, K. H., M. N. Özişik and J. C. Mulligan, Proc. of the Fourth International Heat Transfer Conference Paris, 3 Section R2–4, 1–10 (1970).

  17. Pai, S. I. and A. P. Scaglione, Appl. Sci. Res. 22 (1970) 97.

    MATH  Google Scholar 

  18. Chou, Y. S. and L. H. Blake, AIAA Journal 8 (1970) 1680.

    MATH  ADS  Google Scholar 

  19. Cheng, E. H. W., M. N. Özişik and J. C. Williams, III, J. Appl. Mechanics 38E (1971) 282.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, E.H., Özişik, M.N. Heat transfer in a radiating, nonsteady, three-dimensional stagnation flow. Appl. Sci. Res. 28, 185–197 (1973). https://doi.org/10.1007/BF00413066

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00413066

Keywords

Navigation