Skip to main content
Log in

Membranpotentiale bei experimentellem Kaliummangel

Messungen am Rattenzwerchfell in vitro

Membrane potentials in experimental potassium deficiency

Measurements in rat diaphragm in vitro

  • Published:
Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere Aims and scope Submit manuscript

Summary

In 127 skeletal muscle cells of 8 rats with alimentary potassium depletion we found a membrane potential of −92.8 (s=±6.8) mV. This value is 12.4 mV higher than the membrane potential of −80.4 (s=±6.5) mV in 150 cells of 10 control animals (p<0.001). The measurements were made in diaphragm muscles incubated in a modified Krebs-solution. The found hyperpolarisation can not be explained by change of the intra-/extracellular potassium concentrationgradient, but has to be regarded as a consequence of ionic conductivity changes of the cell membrane, possibly as a consequence of a stimulated active sodium transport (“electrogenic pump”).

Zusammenfassung

Bei insgesamt 127 Zellen von 8 Ratten mit einem alimentären Kaliummangel fanden wir mit −92,8 (s=±6,8) mV ein absolut um 12,4 mV höheres Membranpotential (p<0,001) als bei insgesamt 150 Zellen von 10 Kontrolltieren mit einem Wert von −80,4 (s=±6,5) mV. Die Untersuchungen wurden in vitro bei gleicher extracellulärer Kaliumkonzentration durchgeführt. Die gemessene Hyperpolarisation kann nicht durch eine Änderung des intraextracellulären Kaliumkonzentrationsgradienten erklärt werden. Sie muß als Folge von Änderungen der Ionenleitfähigkeit der Zellmembran angesehen werden, möglicherweise im Sinne einer Stimulierung des aktiven Natriumtransports („elektrogene Pumpe“).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Adrian, R. H., and W. H. Freygang: The potassium and chloride conductance of frog muscle membrane. J. Physiol. (Lond.) 163, 61–103 (1962).

    Google Scholar 

  2. ——, and C. L. Slayman: Membrane potential and conductance during transport of sodium, potassium and rubidium in frog muscle. J. Physiol. (Lond.) 184, 970–1014 (1966).

    Google Scholar 

  3. Conway, E. J., and D. Hingerty: Relations between potassium and sodium levels in mammalian muscle and blood plasma. Biochem. J. 42, 372–376 (1947).

    Google Scholar 

  4. Cross, S. B., R. D. Keynes, and Renata Rybova: The coupling of sodium efflux and potassium influx in frog muscle. J. Physiol. (Lond.) 181, 865–880 (1965).

    Google Scholar 

  5. Cotlove, E., A. M. Holliday, R. Schwartz, and W. M. Wallace: Effect of electrolyte depletion and acid-base disturbance on muscle cations. Amer. J. Physiol. 167, 665–674 (1951).

    Google Scholar 

  6. Creese, R., N. W. Scholes, and W. J. Whalen: Resting potentials of diaphragm muscle after prolonged anoxia. J. Physiol. (Lond.) 140, 301–317 (1958).

    Google Scholar 

  7. Frumento, A. S.: Sodium pump; its electrical effects in skeletal muscle. Science 147, 1442–1443 (1965).

    Google Scholar 

  8. Führ, J., J. Kaczmarczyk u. C.-D. Krüttgen: Eine einfache colorimetrische Methode zur Inulinbestimmung für Nieren-Clearance-Untersuchungen bei Stoffwechselgesunden und Diabetikern. Klin. Wschr. 33, 729–730 (1955).

    Google Scholar 

  9. Heppel, L. A.: The electrolytes of muscle and liver in potassium depleted rats. Amer. J. Physiol. 127, 385–392 (1939).

    Google Scholar 

  10. Hodgkin, A. L., and P. Horowicz: The influence of potassium and chloride ions on the membrane potential of single muscle fibers. J. Physiol. (Lond.) 148, 127–160 (1959).

    Google Scholar 

  11. Hutter, O. F., and D. Noble: The chloride conductance of frog skeletal muscle. J. Physiol. (Lond.) 151, 89–102 (1960a).

    Google Scholar 

  12. Irvine, R. O. H., S. J. Saundners, M. D. Milne, and M. A. Crawford: Gradients of potassium and hydrogen ion in potassium-deficient voluntary muscle. Clin. Sci. 20, 1–18 (1960).

    Google Scholar 

  13. Kerkut, G. A., and R. C. Thomas: An electrongenic sodium pump in snail nerve cells. Comp. Biochem. Physiol. 14, 167–183 (1965).

    Google Scholar 

  14. Kernan, R. P.: Membrane potential changes during sodium transport in frog sartorius muscle. Nature (Lond.) 193, 986–987 (1962).

    Google Scholar 

  15. Krebs, H. A., u. K. Henseleit: Untersuchungen über die Harnstoffbildung im Tierkörper. Hoppe-Seylers Z. physiol. Chem. 210, 33 (1932).

    Google Scholar 

  16. Ling, G., and R. W. Gerard: The normal membrane potential of frog sartorius fibres. J. cell. comp. Physiol. 34, 383 (1949).

    Google Scholar 

  17. Meves, H.: Aktiver Ionentransport an Nerv und Muskel in: Transport und Funktion intracellulärer Electrolyte. München: Urban & Schwarzeberg 1967.

    Google Scholar 

  18. Relman, A. S., G. W. Gorham, and N. G. Levinsky: The relation between external potassium concentration and the electrolyte content of isolated rat muscle in the steady state. J. clin. Invest. 40, 386–393 (1961).

    Google Scholar 

  19. Zierler, K. L.: Effect of insulin on membrane potential and potassium content of rat muscle. Amer. J. Physiol. 197, 515–523 (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Mit Unterstützung der Deutschen Forschungsgemeinschaft.

Technische Assistenz: S. Winterling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolte, HD., Lüderitz, B. Membranpotentiale bei experimentellem Kaliummangel. Pflügers Arch. 301, 43–49 (1968). https://doi.org/10.1007/BF00412417

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00412417

Key-Words

Schlüsselwörter

Navigation