Skip to main content
Log in

Laminar source flow between parallel porous disks

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

An analysis is presented for laminar source flow between infinite parallel porous disks. The solution is in the form of a perturbation from the creeping flow solution. Expressions for the velocity, pressure, and shear stress are obtained and compared with the results based on the assumption of creeping flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

half distance between disks

\(\bar r\) :

radial coordinate

r :

dimensionless radial coordinate, \(\bar r\)/a

\(\bar z\) :

axial coordinate

z :

dimensionless axial coordinate, \(\bar z\)/a

\(\bar R\) :

radial coordinate of a point in the flow

R :

dimensionless radial coordinate of a point in the flow, \(\bar R\)/a

ū :

velocity component in radial direction

u :

=ūa/ν, dimensionless velocity component in radial direction

\(\bar v\) :

velocity component in axial direction

v :

=\(\bar v\)a/ν}, dimensionless velocity component in axial direction

\(\bar p\) :

static pressure

p :

=\(\bar p\)(a 2/ρν 2), dimensionless static pressure

\(\begin{array}{*{20}c} {\text{*}} \\ p \\ \end{array}\) :

=p(r, z)−p(R, z), dimensionless pressure drop

V :

magnitude of suction or injection velocity

Q :

volumetric flow rate of the source

Re :

source Reynolds number, Q/4πνa

\(\begin{array}{*{20}c} {\text{*}} \\ {Re} \\ \end{array}\) :

reduced Reynolds number, Re/r 2

\(\begin{array}{*{20}c} {\text{*}} \\ {Re_{\text{c}} } \\ \end{array}\) :

critical Reynolds number

R w :

wall Reynolds number, Va/ν

μ :

viscosity

ρ :

density

ν :

=μ/ρ, kinematic viscosity

\(\bar \tau _0\) :

shear stress at upper disk

τ 0 :

=\(\bar \tau _0\)(a 2/ρν 2), dimensionless shear stress at upper disk

\(\begin{array}{*{20}c} {\text{*}} \\ {\tau _{\text{0}} } \\ \end{array}\) :

shear stress ratio, τ 0/(τ 0)inertialess

u〉:

=\(\int\limits_0^1 {u{\text{ d}}z}\), dimensionless average radial velocity

\(\begin{array}{*{20}c} {\text{*}} \\ u \\ \end{array}\) :

u/〈u〉, ratio of radial velocity to average radial velocity

ψ :

dimensionless stream function

References

  1. Berman, A. S., J. Appl. Phys. 24 (1953) 1232.

    Google Scholar 

  2. Sellars, J. R., J. Appl. Phys. 26 (1955) 489.

    Google Scholar 

  3. Yuan, S. W., J. Appl. Phys. 27 (1956) 267.

    Google Scholar 

  4. Yuan, S. W. and A. B. Finkelstein, Trans. ASME 78 (1956) 719.

    Google Scholar 

  5. Elkouh, A. F., J. Eng. Mech. Div. ASCE 93 No. EM 4 (1967) 31.

    Google Scholar 

  6. Peube, J. L., J. de Méc. 2 (1963) 377.

    Google Scholar 

  7. Savage, S. B., Trans. ASME J. Appl. Mech. 31 (1964) 594.

    Google Scholar 

  8. Kreith, F. and H. Viviand, Trans. ASME J. Appl. Mech. 34 (1967) 541.

    Google Scholar 

  9. Beckett, R. and J. Hurt, Numerical Calculations and Algorithms, p. 205, McGraw-Hill, New York 1967.

    Google Scholar 

  10. Chen Che-Pen, J. de Méc. 5 (1966) 245.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elkouh, A.F. Laminar source flow between parallel porous disks. Appl. sci. Res. 21, 284–302 (1969). https://doi.org/10.1007/BF00411613

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00411613

Keywords

Navigation