Skip to main content
Log in

Stoffwechselprodukte von Mikroorganismen

88. Mitteilung Zur Wirkungsweise des L-2,5-Dihydrophenylalanins — eines Phenylalaninantagonisten

Metabolic products of microorganisms

88. Mechanism of action of L-2,5-dihydrophenylalanine—an antagonist of phenylalanine

  • Published:
Archiv für Mikrobiologie Aims and scope Submit manuscript

Summary

L-2,5-Dihydrophenylalanine inhibits the growth of E. coli K 12 in synthetic liquid media when added during the lag phase at a concentration of 5×10-5 M (8.35 γ/ml). The inhibition is reversed uncompetetively by phenylalanine and competetively by tyrosine.

Mutants resistant to 10-3 M dl-p-fluorophenylalanine show cross-resistance to L-2,5-dihydrophenylalanine.

The bacteriostatic action of L-2,5-dihydrophenylalanine is caused by the fact that it interferes with the regulation of the biosynthesis of the aromatic amino acids as an antimetabolite of phenylalanine, similar to p-fluorophenylalanine.

L-2,5-Dihydrophenylalanine inhibits the activity of the phe-sensitive isoenzyme of the DAHP-synthetase for 72% at a concentration of 10-3 M. The activity of the prephenate dehydratase is inhibited for 66% at this concentration.

The synthesis of the DAHP-synthetase of E. coli K12 is repressed (30%) when L-2,5-dihydrophenylalanine is added to the culture medium at a concentration of 5×10-5 M.

A possible incorporation of L-2,5-dihydrophenylalanine into protein is discussed.

Zusammenfassung

L-2,5-Dihydrophenylalanin hemmt bei Zugabe in der lag-Phase das Wachstum von E. coli K 12 in definiertem, flüssigen Medium bei einer Konzentration von 5×10-5 M (8,35 γ/ml). Die Hemmwirkung wird von Phenylalanin unkompetitiv und von Tyrosin kompetitiv aufgehoben.

Mutanten, die resistent sind gegen 10-3 M dl-p-Fluorphenylalanin zeigen Kreuzresistenz gegen L-2,5-Dihydrophenylalanin.

Die bakteriostatische Wirkung von L-2,5-Dihydrophenylalanin auf E. coli K 12 beruht darauf, daß es ähnlich wie p-Fluorphenylalanin als Phenylalanin-Antimetabolit in die Regulation der Biosynthese der aromatischen Aminosäuren eingreift.

L-2,5-Dihydrophenylalanin hemmt die Aktivität des Phe-sensitiven Isoenzyms der DAHP-Synthetase bei einer Konzentration von 10-3 M zu 72%. Die Aktivität der Prephenatdehydratase wird bei dieser Konzentration zu 66% gehemmt.

Bei Zugabe von 5×10-5 M L-2,5-Dihydrophenylalanin zum Kulturmedium von E. coli K 12 wird die Bildung der DAHP-Synthetase zu 30% reprimiert.

Ein möglicher Einbau von L-2,5-Dihydrophenylalanin ins Protein wird diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Bailey, J. L.: Techniques in protein chemistry, 2. Aufl. Amsterdam: Elsevier Publ. Comp. 1967.

    Google Scholar 

  • Ballou, C. E., Fischer, H. O. L., MacDonald, D. L.: The synthesis and properties of D-erythrose-4-phosphate. J. Amer. chem. Soc. 77, 5967–5970 (1955).

    Google Scholar 

  • Brostrom, A. M., Binkley, S. B.: Membrane alteration and the formation of metachromatic granules in Escherichia coli treated with p-fluorophenylalanine. J. Bact. 98, 1263–1270 (1969a).

    PubMed  Google Scholar 

  • ——: Synchronous growth of Escherichia coli after treatment with p-fluorophenylalanine. J. Bact. 98, 1271–1273 (1969b).

    PubMed  Google Scholar 

  • Brown, K. D.: Regulation of aromatic amino acid biosynthesis in Escherichia coli K 12. Genetics 60, 31–48 (1968).

    Google Scholar 

  • —, Doy, C. H.: Control of three isoenzymic 7-phospho-2-oxo-3-deoxy-D-arabino-heptonate-D-erythrose-4-phosphate lyases of Escherichia coli W and derived mutants by repressive and “inductive” effects of the aromatic amino acids. Biochim. biophys. Acta (Amst.) 118, 157–172 (1966).

    Google Scholar 

  • Carpenter, C., Binkley, S. B.: Effect of p-fluorophenylalanine on chromosome replication in Escherichia coli. J. Bact. 96, 939–949 (1968).

    PubMed  Google Scholar 

  • Chandra, P., Vining, L. C.: Conversion of phenylalanine to tyrosine by microorganisms. Canad. J. Microbiol. 14, 573–578 (1968).

    Google Scholar 

  • Chapeville, F., Lipmann, F., v. Ehrenstein, G., Weisblum, B., Ray, W. J., Jr.: On the role of soluble ribonucleic acid in coding for amino acids. Proc. nat. Acad. Sci. (Wash.) 48, 1086–1092 (1962).

    Google Scholar 

  • Chapman, P. J., Dagley, S.: Bacterial oxidation of phenylalanine and phenylacetic acid. Biochem. J. 75, 6 (1960).

    Google Scholar 

  • Cotton, R. G. H., Gibson, F.: The biosynthesis of phenylalanine and tyrosine; enzymes converting chorismic acid into prephenic acid and their relationship to prephenate dehydrogenase. Biochim. biophys. Acta (Amst.) 100, 76–88 (1965).

    Google Scholar 

  • Davis, B. D., Mingioli, E. S.: Mutants of Escherichia coli requiring methionine or vitamin B 12. J. Bact. 60, 17–28 (1950).

    PubMed  Google Scholar 

  • Doy, D. H., Brown, K. D.: Control of aromatic biosynthesis: the multiplicity of 7-phospho-2-oxo-3-deoxy-D-arabino-heptonate-D-erythrose-4-phosphate-lyase (pyruvate phosphorylating) in Escherichia coli W. Biochim. biophys. Acta (Amst.) 104, 377–389 (1965).

    Google Scholar 

  • Duda, E., Staub, M., Venetianer, P., Denes, G.: Interaction between phenylalanine-tRNA and the allosteric first enzyme of the aromatic amino acid biosynthetic pathway. Biochem. biophys. Res. Commun. 32, 992–997 (1968).

    PubMed  Google Scholar 

  • Eidlic, L., Neidhardt, F. C.: Role of valyl-sRNA synthetase in enzyme repression. Proc. nat. Acad. Sci. (Wash.) 53, 539–543 (1965).

    Google Scholar 

  • Fickenscher, U., Keller-Schierlein, W., Zähner, H.: Stoffwechselprodukte von Mikroorganismen. 87. Mitt. L-2,5-Dihydrophenylalanin. Arch. Mikrobiol. 75, 346–352 (1971).

    PubMed  Google Scholar 

  • Gibson, F.: Chorismic acid: purification and some chemical and physical studies. Biochem. J. 90, 256–261 (1964).

    PubMed  Google Scholar 

  • —, Pittard, J.: Pathways of biosynthesis of aromatic amino acids and vitamins and their control in microorganisms. Bact. Rev. 32, 465–492 (1968).

    PubMed  Google Scholar 

  • Gibson, M. I., Gibson, F.: Preliminary studies on the isolation and metabolism of an intermediate in aromatic biosynthesis: chorismic acid. Biochem. J. 90, 248–256 (1964).

    PubMed  Google Scholar 

  • Hardy, C., Binkley, S. B.: Effect of p-fluorophenylalanine on nucleic acid biosynthesis and cell division in Escherichia coli. Biochemistry 6, 1892–1898 (1967).

    PubMed  Google Scholar 

  • Layne, E.: Spectrophotometric and turbimetric methods for measuring proteins. In: Methods in Enzymology, vol. 3, pp. 447–454 (hrsg. von S. P. Colowick u. N. O. Kaplan). New York: Academic Press 1957.

    Google Scholar 

  • Lingens, F., Goebel, W., Uesseler, H.: Regulation der Biosynthese der aromatischen Aminosäuren in Claviceps paspali. Europ. J. Biochem. 2, 442–447 (1967).

    PubMed  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951).

    PubMed  Google Scholar 

  • Miller, D. A., Simmonds, S.: Phenylalanine and tyrosine metabolism in E. coli strain K 12. Science 126, 445–446 (1957).

    PubMed  Google Scholar 

  • Mitoma, C., Leeper, L. C.: Enzymic conversion of phenylalanine to tyrosine. Fed. Proc. 13, 266 (1954).

    Google Scholar 

  • Moyed, B. S.: Biochemical mechanism of drug resistance. Ann. Rev. Microbiol. 18, 347–366 (1964).

    Article  Google Scholar 

  • Munier, R., Cohen, G. N.: Incorporation d'analogues structuraux d'aminoacides dans les protéines bactériennes. Biochim. biophys. Acta (Amst.) 21, 592–593 (1956).

    Article  Google Scholar 

  • Nass, G., Poralla, K., Zähner, H.: Effect of antibiotic borrelidin on the regulation of threonine biosynthetic enzymes in E. coli. Biochem. biophys. Res. Commun. 34, 84–91 (1969).

    PubMed  Google Scholar 

  • Poralla, K.: Zur Wirkungsweise des makrolidartigen Antibiotikums Borrelidin und typischer Makrolid-Antibiotika. Dissertation, Universität Tübingen 1967.

  • Previc, E. P., Binkley, S. B.: Repression and inhibition of 3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthetase by p-fluorophenylalanine in Escherichia coli. Biochem. biophys. Res. Commun. 16, 162–166 (1964a).

    PubMed  Google Scholar 

  • ——: Slow exponential growth of Escherichia coli in the presence of p-fluorophenylalanine: effect of the analogue on aromatic biosynthesis. Biochim. biophys. Acta (Amst.) 87, 277–290 (1964b).

    Google Scholar 

  • Roth, J. R., Ames, B. N.: Histidine regulatory mutants in Salmonella typhimurium. II. Histidine regulatory mutants having altered histidyl-t-RNA-synthetase. J. molec. Biol. 22, 325–334 (1966).

    PubMed  Google Scholar 

  • Shive, W., Skinner, C. G.: Amino acid analogues. In: Metabolic inhibitors, pp. 2–58 (hrsg. von R. M. Hochster u. J. H. Quastel). New York: Academic Press 1963.

    Google Scholar 

  • Snow, M. C., Lauinger, C., Ressler, C.: 1,4-cyclohexadiene-1-alanine (2,5-dihydrophenylalanine), a new inhibitor of phenylalanine for the rat and Leuconostoc dextranicum 8086. J. Org. Chem. 33, 1774–1780 (1968).

    PubMed  Google Scholar 

  • Sprinson, D. B., Srinivason, P. R., Katagiri, M.: 3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthetase from Escherichia coli. In: Methods of Enzymology, vol. 5, pp. 394–398 (hrsg. von S. P. Colowick u. N. O. Kaplan). New York: Academic Press 1962.

    Google Scholar 

  • Sprössler, B., Lingens, F.: Chorismat-Mutase aus Claviceps, I. Eigenschaften der Chorismat-Mutase aus verschiedenen Claviceps-Stämmen. Hoppe-Seylers Z. physiol. Chem. 351, 448–458 (1970).

    PubMed  Google Scholar 

  • Srinivason, P. R., Sprinson, D. B.: 2-keto-3-deoxy-D-arabino-heptonic acid 7-phosphate synthetase. J. biol. Chem. 234, 716–722 (1959).

    PubMed  Google Scholar 

  • Staub, M., Denes, G.: Purification and properties of the 3-deoxy-D-arabino-heptulosonate-7-phosphate synthease (phenylalanine sensitive) of Escherichia coli K12. I. Purification of enzyme and some of its catalytic properties. Biochim. biophys. Acta (Amst.) 178, 588–598 (1969a).

    Google Scholar 

  • ——: Purification and properties of the 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (phenylalanine sensitive) of Escherichia coli K 12. II. Inhibition of activity of the enzyme with phenylalanine and functional group-specific reagents. Biochim. biophys. Acta (Amst.) 178, 599–608 (1969b).

    Google Scholar 

  • Wallace, B. J., Pittard, J.: Genetic and biochemical analysis of the isoenzymes concerned in the first reaction of aromatic biosynthesis in Escherichia coli. J. Bact. 93, 237–244 (1967a).

    PubMed  Google Scholar 

  • ——: Chromatography of DAHP synthetase (trp) on DEAE cellulose: A correction. J. Bact. 94, 1279 (1967b).

    PubMed  Google Scholar 

  • ——: Regulator gene controlling enzymes concerned in tyrosine biosynthesis in Escherichia coli. J. Bact. 97, 1234–1241 (1969a).

    PubMed  Google Scholar 

  • ——: Regulation of 3-deoxy-D-arabino-heptulosonic acid synthetase activity in relation to the synthesis of the aromatic vitamins in Escherichia coli K 12. J. Bact. 99, 707–712 (1969b).

    PubMed  Google Scholar 

  • Warburg, O., Christian, W.: Isolierung und Kristallisation des Gärungsferments Enolase. Biochem. Z. 310, 384–421 (1941).

    Google Scholar 

  • Young, I. G., Gibson, F., MacDonald, C. G.: Enzymic and nonenzymic transformations of chorismic acid and related cyclohexadiens. Biochim. biophys. Acta (Amst.) 192, 62–72 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

87. Mitt.: U. Fickenscher, W. Keller-Schierlein u. H. Zähner: L-2,5-Dihydrophenylalanin. Arch. Mikrobiol. 75, 346–352 (1971).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fickenscher, U., Zähner, H. Stoffwechselprodukte von Mikroorganismen. Archiv. Mikrobiol. 76, 28–46 (1970). https://doi.org/10.1007/BF00409312

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00409312

Navigation