Skip to main content
Log in

Generation of reducing prower in chemosynthesis

VII. Mechanism of pyridine nucleotide reduction by thiosulfate in the chemoautotroph Thiobacillus neapolitanus

  • Published:
Archiv für Mikrobiologie Aims and scope Submit manuscript

Summary

Cell-free preparations from T. neapolitanus catalyzed an ATP-dependent reduction of pyridine nucleotides by thiosulfate. The reduction of flavins by thiosulfate was also observed to be an energy-linked process. Optimal reaction occurred at pH 7.3–7.5 in the presence of 7 mM S2O3 =, 1.5 mM ATP and 0.7 mM NAD+ or NADP+. The enzyme(s) catalyzing the energy-linked reactions appear to reside in the 144000 x g supernatant fraction since washed particles failed to catalyze the ATP driven NAD+ reduction by S2O3 +; the cell-free preparations contained, however, S2O3 = oxidase and ferro-cytochrome c: O2 oxidoreductase activities. The ATP-driven reduction of flavins or that of the pyridine nucleotides was inhibited bythe inhibitors that intersect the electron transport chain in the flavin or that of the cytochrome b and c regions. In the flavin-inhibited system, quinones could substitute as electron bypass carriers for the reduction of pyridine nucleotides. Uncouplers of oxidative phosphorylation and oligomycin inhibited the energy-transfer reactions. A utilization of 2 to 3 ATP equivalents was observed for the reduction of each equivalent of NAD+. Such observations indicate that the T. neapolitanus system operated with an efficiency of approximately 80% with respect to the utilization of energy for the generation of reducing power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HQNO:

2-n-hyptyl-4-hydroxyquinoline N-oxide

TTFA:

Thenoyl triflouroacetone

CCCP:

m-chlorocarbonylcyanide-phenylhydrazone

DNP:

2,4-dinitrophenol

References

  • Adams, H.: In: H. U. Bergmeyer: Methods of enzymatic analysis, pp. 573–577. New York: Academic Press 1965.

    Google Scholar 

  • Aleem, M. I. H.: Thiosulfate oxidation and electron transport in Thiobacillus novellus. J. Bact. 90, 95–101 (1965).

    Google Scholar 

  • — Generation of reducing power in chemosynthesis. II. Energy-linked reduction of pyridine nucleotides in the chemoautotroph Nitrosomonas europaea. Biochim. biophys. Acta (Amst.) 113, 216–224 (1966a)_.

    Google Scholar 

  • — Generation of reducing power in chemosynthesis. III. Energy-linked reduction of pyridine nucleotides in Thiobacillus novellus. J. Bact. 91, 729–736 (1966b).

    Google Scholar 

  • Aleem, M. I. H.: Oxidation of inorganic nitrogen compounds. Ann. Rev. Plant. Physiol. 21, 67–90 (1970).

    Google Scholar 

  • — Huang, E.: Carbon dioxide fixation and carboxydismutase in Thiobacillus novellus. Biochem. biophys. Res. Commun. 20, 515–520 (1965).

    Google Scholar 

  • — Lees, H., Nicholas, D. J. D.: Adenosine triphosphate-dependent reduction of nicotinamide adenine dinucleotide by ferrocytochrome c in chemoautotrophic bacteria. Nature (Lond.) 200, 759–761 (1963).

    Google Scholar 

  • Burton, K.: Free energy change associated with the hydrolysis of the thiol-ester bond of acetyl Co A. Biochem. J. 59, 44–46 (1955).

    Google Scholar 

  • Chance, B., Hollunger, G.: Succinate-linked pyridine nucleotide reduction in mitochondria. Fed. Proc. 16, 163 (1957).

    Google Scholar 

  • —— Energy-linked reduction of mitochondrial pyridine nucleotides. Nature (Lond.) 185, 666–672, (1960).

    Google Scholar 

  • —— The interaction of energy and electron transfer reactions in Mitochondria. J. biol. Chem. 236, 1534–1543, 1555–1561, 1562–1568, 1569–1576, 1577–1584 (1961).

    Google Scholar 

  • — Nishimura, M.: On the mechanism of chlorophyll-cytochrome interaction: the temperature insensitivity of light induced cytochrome oxidation in chromatium. Proc. nat. Acad. Sci. (Wash.) 46, 19–25 (1960).

    Google Scholar 

  • — Olson, J. M.: Primary metabolic events associated with photosynthesis. Arch. Biochem. 88, 54–58 (1960).

    Google Scholar 

  • Cook, T. M., Umbreit, W. W.: The occurrence of cytochromes and coenzyme Q in Thiobacillus thiooxidans. Biochemistry 2, 194 (1963).

    Google Scholar 

  • Gibbs, M., Schiff, J. A.: Chemosynthesis: the energy relations of chemo-autotrophic organisms. In: F. C. Steward, ed., Plant physiology: a treatise, Vol. 1B, pp. 279–319. New York: Academic Press, Inc. 1960.

    Google Scholar 

  • Klingenberg, M., Slenczka, W.: Pyridinnucleotide in Leber-Mitochondrien. Eine Analyse ihrer Redox-Beziehungen. Biochem. Z. 331, 486–517 (1959a).

    Google Scholar 

  • —— Vergleichende Biochemie der Pyridinnucleotidsysteme in Mitochondrien verschiedener Organe. Biochem. Z. 332, 47 (1959b).

    Google Scholar 

  • Mayeux, J. V., Johnson, E. J.: Effect of adenosine monophosphate, adenosine diphosphate and nicotinamide adenine dinucleotide on adenosine triphosphate dependent carbon dioxide fixation in the autotroph Thiobacillus neapolitanus. J. Bact. 94, 409–414 (1967).

    Google Scholar 

  • Ross, A. J., Schoenhoff, R. L., Aleem, M. I. H.: Electron transport and coupled phosphorylation in the chemoautotroph Thiobacillus neapolitanus. Biochem. biophys. Res. Commun. 32, 301–306 (1968).

    Google Scholar 

  • Sewell, D. L., Aleem, M. I. H.: Generation of reducing power in chemosynthesis. V. The mechanism of pyridine nucleotide reduction by nitrite in the chemoautotroph Nitrobacter agilis. Biochim. biophys. Acta (Amst.) 172, 467–475 (1969).

    Google Scholar 

  • Trudinger, P. A.: Thiosulfate oxidation and cytochromes in Thiobacillus x. 1. Fractionation of bacterial extracts and properties of cytochromes. Biochem. J. 78, 673–680 (1961a).

    Google Scholar 

  • — Thiosulfate oxidation and cytochromes in Thiobacillus x. 2. Thiosulfate oxidizing enzyme. Biochem. J. 78, 680–686 (1961b).

    Google Scholar 

  • Vishniac, W., Santer, M.: The thiobacilli. Bact. Rev. 21, 195–213 (1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saxena, J., Aleem, M.I.H. Generation of reducing prower in chemosynthesis. Archiv. Mikrobiol. 84, 317–326 (1972). https://doi.org/10.1007/BF00409080

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00409080

Keywords

Navigation